Kseniia N Bardakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel biodegradable star-shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization. Nanomedicine, 2016, 11, 1041-1053.	1.7	67
2	Two-Photon-Induced Microstereolithography of Chitosan-g-Oligolactides as a Function of Their Stereochemical Composition. Polymers, 2017, 9, 302.	2.0	27
3	Solid-state synthesis of unsaturated chitosan derivatives to design 3D structures through two-photon-induced polymerization. Mendeleev Communications, 2015, 25, 280-282.	0.6	25
4	Compatibility of cells of the nervous system with structured biodegradable chitosan-based hydrogel matrices. Applied Biochemistry and Microbiology, 2016, 52, 508-514.	0.3	22
5	Tailoring the collagen film structural properties via direct laser crosslinking of star-shaped polylactide for robust scaffold formation. Materials Science and Engineering C, 2020, 107, 110300.	3.8	21
6	Flavin mononucleotide photoinitiated cross-linking of hydrogels: Polymer concentration threshold of strengthening. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 341, 108-114.	2.0	18
7	From Aggregates to Porous Three-Dimensional Scaffolds through a Mechanochemical Approach to Design Photosensitive Chitosan Derivatives. Marine Drugs, 2019, 17, 48.	2.2	18
8	Chitosan-g-oligo(L,L-lactide) copolymer hydrogel for nervous tissue regeneration in glutamate excitotoxicity: <i>in vitro</i> feasibility evaluation. Biomedical Materials (Bristol), 2020, 15, 015011.	1.7	18
9	Chitosan- <i>g</i> -oligo(L,L-lactide) Copolymer Hydrogel Potential for Neural Stem Cell Differentiation. Tissue Engineering - Part A, 2020, 26, 953-963.	1.6	18
10	Solvent-free synthesis and characterization of allyl chitosan derivatives. RSC Advances, 2019, 9, 20968-20975.	1.7	17
11	Robust thermostable polymer composition based on poly[N,N′-(1,3-phenylene)isophthalamide] and 3,3-bis(4-acrylamidophenyl)phthalide for laser 3D printing. Mendeleev Communications, 2019, 29, 223-225.	0.6	12
12	Reinforced Hybrid Collagen Sponges for Tissue Engineering. Bulletin of Experimental Biology and Medicine, 2018, 165, 142-147.	0.3	11
13	UVâ€laser formation of 3D structures based on thermally stable heterochain polymers. Journal of Applied Polymer Science, 2018, 135, 46463.	1.3	10
14	4D Printing of Shapeâ€Memory Semiâ€Interpenetrating Polymer Networks Based On Aromatic Heterochain Polymers. Advanced Materials Technologies, 2022, 7, 2100790.	3.0	10
15	Novel Biocompatible Material Based on Solid-State Modified Chitosan for Laser Stereolithography. Sovremennye Tehnologii V Medicine, 2015, 7, 20-31.	0.4	10
16	Solid state synthesis of chitosan and its unsaturated derivatives for laser microfabrication of 3D scaffolds. IOP Conference Series: Materials Science and Engineering, 2015, 87, 012079.	0.3	9
17	Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering. IOP Conference Series: Materials Science and Engineering, 2015, 87, 012074.	0.3	7
18	Fabrication of microstructured materials based on chitosan and D,L-lactide copolymers using laser-induced microstereolithography. High Energy Chemistry, 2016, 50, 389-394.	0.2	6

Kseniia N Bardakova

#	Article	IF	CITATIONS
19	3D printing biodegradable scaffolds with chitosan materials for tissue engineering. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012009.	0.3	6
20	Coating of polylactide films by chitosan: Comparison of methods. Journal of Applied Polymer Science, 2020, 137, 48287.	1.3	6
21	Fabrication of microstructured materials based on chitosan and its derivatives using two-photon polymerization. High Energy Chemistry, 2015, 49, 300-303.	0.2	5
22	A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds. Polymers, 2021, 13, 3385.	2.0	5
23	Elaboration of a bacterial cellulose matrix for the immobilisation of Escherichia coli cells. International Journal of Nanotechnology, 2018, 15, 288.	0.1	4
24	Approach to tune drug release in particles fabricated from methacrylate functionalized polylactides. Molecular Systems Design and Engineering, 2021, 6, 202-213.	1.7	4
25	Long-Term Neurological and Behavioral Results of Biodegradable Scaffold Implantation in Mice Brain. Sovremennye Tehnologii V Medicine, 2016, 8, 198-211.	0.4	3
26	SUPERCRITICAL FLUID TREATMENT OF THREE-DIMENSIONAL HYDROGEL MATRICES, COMPOSED OF CHITOSAN DERIVATIVES. Vestnik Transplantologii I Iskusstvennykh Organov, 2016, 18, 85-93.	0.1	2
27	Features of structures formation on the basis of chitosan derivatives by a prototype of 263 nm laser stereolithograph. Journal of Physics: Conference Series, 2016, 737, 012046.	0.3	1
28	Supercritical Fluid Treatment of Three-Dimensional Hydrogel Matrices Obtained from Allylchitosan by Laser Stereolithography. Russian Journal of Physical Chemistry B, 2018, 12, 1144-1151.	0.2	1
29	Three-Dimensional Printing of Tetrafunctional Polylactide Using Ciprofloxacin Derivatives as Photoinitiators. Bulletin of the Russian Academy of Sciences: Physics, 2020, 84, 1406-1410.	0.1	1