Mojtaba Dehmollaian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refocusing Through Building Walls Using Synthetic Aperture Radar. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 1589-1599.	2.7	278
2	Through-the-Wall Imaging Using Differential SAR. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 1289-1296.	2.7	106
3	A Printed Circularly Polarized Y-Shaped Monopole Antenna. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 22-25.	2.4	94
4	Wave Scattering by a Cylindrical Metasurface Cavity of Arbitrary Cross Section: Theory and Applications. IEEE Transactions on Antennas and Propagation, 2019, 67, 4059-4072.	3.1	36
5	Electromagnetic Scattering From Foliage Camouflaged Complex Targets. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 2698-2709.	2.7	30
6	Through-Wall Shape Reconstruction and Wall Parameters Estimation Using Differential Evolution. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 201-205.	1.4	30
7	Buried-Object Time-Reversal Imaging Using UWB Near-Ground Scattered Fields. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 7317-7326.	2.7	26
8	A Fast Semianalytical Solution of a 2-D Dielectric-Filled and Coated Rectangular Groove. IEEE Transactions on Antennas and Propagation, 2014, 62, 5099-5107.	3.1	25
9	Scattering From Layered Rough Surfaces: Analytical and Numerical Investigations. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3685-3696.	2.7	24
10	A Time-Reversal Imaging System for Breast Screening: Theory and Initial Phantom Results. IEEE Transactions on Biomedical Engineering, 2018, 65, 2542-2551.	2.5	24
11	FDTD Modeling of Dispersive Bianisotropic Media Using Z-Transform Method. IEEE Transactions on Antennas and Propagation, 2011, 59, 2268-2279.	3.1	23
12	A Feasibility Study on the Application of Radar Imaging for the Detection of Transformer Winding Radial Deformation. IEEE Transactions on Power Delivery, 2012, 27, 2113-2121.	2.9	21
13	An Iterative Modified Diffraction Tomography Method for Reconstruction of a High-Contrast Buried Object. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 4138-4148.	2.7	20
14	Electromagnetic Time-Reversal Imaging of Pinholes in Pipes. IEEE Transactions on Antennas and Propagation, 2016, 64, 1356-1363.	3.1	19
15	Three-Dimensional Near-Field Microwave Imaging Using Hybrid Linear Sampling and Level Set Methods in a Medium With Compact Support. IEEE Transactions on Antennas and Propagation, 2014, 62, 5117-5125.	3.1	16
16	Analytical, numerical, and experimental methods for through-the-wall radar imaging. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2008, , .	1.8	15
17	Scattering by a Dielectric Sphere Buried in a Half-Space With a Slightly Rough Interface. IEEE Transactions on Antennas and Propagation, 2018, 66, 347-359.	3.1	15
18	An Approximate Solution of Scattering From Reinforced Concrete Walls. IEEE Transactions on Antennas and Propagation, 2008, 56, 2681-2690.	3.1	14

Mojtaba Dehmollaian

#	Article	IF	CITATIONS
19	Time Reversal Imaging of Deeply Buried Targets Under Moderately Rough Surfaces Using Approximate Transmitted Fields. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 3897-3905.	2.7	14
20	Target Above Random Rough Surface Scattering Using a Parallelized IPO Accelerated by MLFMM. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1481-1485.	1.4	13
21	Scattering From Two Rough Surfaces With Inhomogeneous Dielectric Profiles. IEEE Transactions on Antennas and Propagation, 2015, 63, 5753-5766.	3.1	13
22	Modeling of the perfect electromagnetic conducting boundary in the finite difference time domain method. Radio Science, 2013, 48, 453-462.	0.8	12
23	Second-Order Perturbative Solution of Cross-Polarized Scattering From Multilayered Rough Surfaces. IEEE Transactions on Antennas and Propagation, 2016, 64, 1877-1890.	3.1	12
24	Measuring the surface roughness of geological rock surfaces in SAR data using fractal geometry. Comptes Rendus - Geoscience, 2017, 349, 114-125.	0.4	12
25	A Method for Cancellation of Clutter Due to an Object in Transceiver Side of a Wall for Through-Wall Sensing Applications. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 559-563.	1.4	11
26	A Hybrid Quantitative Method for Inverse Scattering of Multiple Dielectric Objects. IEEE Transactions on Antennas and Propagation, 2016, 64, 977-987.	3.1	11
27	Comparison of Tensor Boundary Conditions With Generalized Sheet Transition Conditions. IEEE Transactions on Antennas and Propagation, 2019, 67, 7396-7406.	3.1	10
28	Reflection From Stratified Media Backed by a Perfect Electromagnetic Conductor (PEMC). IEEE Transactions on Antennas and Propagation, 2012, 60, 4969-4973.	3.1	9
29	Second-Order Perturbative Solution of Scattering From Two Rough Surfaces With Arbitrary Dielectric Profiles. IEEE Transactions on Antennas and Propagation, 2015, 63, 5767-5776.	3.1	9
30	Reconstruction of Concealed Objects in a Corrugated Wall With a Smoothly Varying Roughness Using the Linear Sampling Method. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3589-3598.	2.7	9
31	Through a Cinder Block Wall Refocusing Using SAR Back Projection Method. IEEE Transactions on Antennas and Propagation, 2019, 67, 1212-1222.	3.1	8
32	Hybrid FDTD and single-scattering theory for simulation of scattering from hard targets camouflaged under forest canopy. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 2072-2082.	2.7	7
33	Optimum Polarizations for Discrimination of a Foliage-Camouflaged Target, Using Genetic Algorithms. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 82-86.	1.4	7
34	Experimental Investigation of Factorization Method as a Qualitative Approach for Near-Field Microwave Imaging. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 289-292.	2.4	7
35	Simultaneous Microwave Imaging and Parameter Estimation Using Modified Level-Set Method. IEEE Transactions on Antennas and Propagation, 2016, 64, 3554-3564.	3.1	6
36	Better Estimated IEM Input Parameters Using Random Fractal Geometry Applied on Multi-Frequency SAR Data. Remote Sensing, 2017, 9, 445.	1.8	6

#	Article	IF	CITATIONS
37	Efficient Method for Calculating the Shielding Effectiveness of Axisymmetric Multilayered Composite Enclosures. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 218-228.	1.4	6
38	Analytical and numerical calculation of reflection from a stratified structure backed by a PEMC. , 2011, , .		5
39	A Method of Moments for Analysis of Electromagnetic Scattering From Inhomogeneous Anisotropic Bodies of Revolution. IEEE Transactions on Antennas and Propagation, 2018, 66, 2976-2986.	3.1	5
40	Analysis of wave scattering from 2D curved metasurfaces using Floquet and Fourier series expansions. IET Microwaves, Antennas and Propagation, 2021, 15, 981.	0.7	5
41	Limitations of the Metasurface Diluted-Slab Model. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2020, 5, 255-264.	1.4	5
42	Localisation and permittivity extraction of an embedded cylinder using decomposition of the time reversal operator. IET Microwaves, Antennas and Propagation, 2020, 14, 851-859.	0.7	5
43	Simulation of Through-Wall Microwave Imaging: Forward and Inverse Models. , 2006, , .		4
44	Hybrid FDTD and ray optics approximation for simulation of through-wall microwave imaging. , 2006, , \cdot		4
45	Refocusing through building walls using synthetic aperture radar. , 2007, , .		4
46	Refocusing through single layer building wall using synthetic aperture radar. , 2007, , .		3
47	Implementation of a PEMC boundary condition in the 2-D FDTD technique. , 2012, , .		3
48	Scattering of an object above a rough surface with impedance boundaries using IPO and FMM. , 2012, , .		3
49	A closed form formula for determining the depth of a filled rectangular crack. , 2014, , .		3
50	Coplanar rotman lens and antipodal vivaldi antenna array for L- and S-band applications. Microwave and Optical Technology Letters, 2015, 57, 1305-1308.	0.9	3
51	Ultra-wideband electromagnetic space-frequency time reversal beamforming in a rectangular metal tube. , 2016, , .		3
52	Imaging Through a Wall With Corrugated Surfaces. IEEE Geoscience and Remote Sensing Letters, 2016, , 1-5.	1.4	3
53	Buried Target Imaging: A Comparative Study. Sensing and Imaging, 2017, 18, 1.	1.0	3
54	General Mapping Between Complex Spatial and Temporal Frequencies by Analytical Continuation. IEEE Transactions on Antennas and Propagation, 2021, 69, 6531-6545.	3.1	3

#	Article	IF	CITATIONS
55	PEMC-backed perfectly matched layer as a truncation boundary. , 2012, , .		2
56	Optimized design of a low-RCS patch antenna using a frequency selective surface. , 2012, , .		2
57	Buried object adaptive shape reconstruction and ground parameters estimation using differential evolution. IET Microwaves, Antennas and Propagation, 2013, 7, 157-165.	0.7	2
58	A novel FDTD formulation to model dispersive chiral media. , 2017, , .		2
59	A time-reversal imaging system for buried objects in layered media using complex images Green's functions. AEU - International Journal of Electronics and Communications, 2019, 105, 1-8.	1.7	2
60	Perfect Penetrable Cloaking Using Gain-Less and Loss-less Bianisotropic Metasurfaces. , 2019, , .		2
61	Scattered Fields of a 2-D Rectangular Room Composed of Cinder Block Walls Using Floquet–Fourier Series Expansion. IEEE Transactions on Antennas and Propagation, 2019, 67, 390-399.	3.1	2
62	Polarization discrimination for improving foliage-camouflaged target detection. , 0, , .		1
63	Electric dipole radiation in proximity of a wall and a ground plane. , 2012, , .		1
64	Time-reversal imaging of underground targets using lateral waves. , 2012, , .		1
65	Ultra wideband electromagnetic DORT time-reversal localization of single-defect in pipe. , 2016, , .		1
66	Imaging and permittivity variation record of an embedded dielectric cylinder using TR-DORT. , 2017, , .		1
67	Design and implementation of a head imaging system for trauma detection. , 2017, , .		1
68	A quantitative investigation of through the wall imaging. , 2017, , .		1
69	Microwave Imaging Using Frequency-Diverse Scattering of a Random Rough surface. , 2019, , .		1
70	Improved discrimination of geological units via geomorphological classification of synthetic aperture radar images. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	1
71	IE-GSTC Analysis of Metasurface Cavities and Application to Redirection Cloaking. , 2020, , .		1
72	Optimum polarization for foliage camouflaged target discrimination using a genetic algorithm. , 0, , .		0

Article	IF	CITATIONS
FDTD and single scattering formulation for simulation of foliage camouflaged hard targets. , 0, , .		0
Electromagnetic scattering from foliage camouflaged hard targets, in VHF-band. , 0, , .		0
A dual-band printed zigzag antenna with two different bend angles. , 2011, , .		0
A clutter cancellation method for through-wall SAR imaging. , 2012, , .		0
Scattering from coated cracks for sub-millimeter wave applications by KP method. , 2012, , .		0
RCS of a target above a random rough surface with impedance boundaries using GO and PO methods. , 2012, , .		0
Electromagnetic plane-wave scattering of a coated rectangular crack. , 2012, , .		0
Qualitative imaging of penetrable scatterer using near-field data. , 2013, , .		0
Scattering of an object with impedance surfaces using IPO and MLFMM. , 2014, , .		0
Level set method as a technique to retrieve target shape from blurred indicator function. , 2014, , .		0
Modified level set method for accurate physical and geometrical reconstruction. , 2014, , .		0
Transmitted fields of a directional antenna in proximity of a wall. IET Microwaves, Antennas and Propagation, 2015, 9, 176-184.	0.7	0
Millimeter-wave imaging: A comparative study. , 2016, , .		0
Refocusing through cinder block walls. , 2017, , .		0
Transmission and reflection characteristics of a multi-layered wall with doubly periodic interfaces. AEU - International Journal of Electronics and Communications, 2020, 117, 153087.	1.7	0
Polarizability Extraction of Above-Half-Space Transversal Dipole Scatterers Using a Fast Waveguide-Based Approach. Advanced Electromagnetics, 2019, 8, 66-73.	0.7	0
Discrimination of Geological Top-Formations by their Morphology through SAR Images and via Fractal Geometry implementation in IEM Backscattering Model(Case Study: Zagros Thrust Belt). Journal of Geospatial Information Technology, 2019, 7, 137-157.	0.2	0
	ARTICLE FDTD and single scattering formulation for simulation of foliage camouflaged hard targets, , 0, ,. Electromagnetic scattering from foliage camouflaged hard targets, in VHF-band., 0, A dual-band printed zigzag antenna with two different bend angles., 2011, A clutter cancellation method for through wall SAR imaging., 2012, Scattering from coated cracks for sub-millimeter wave applications by KP method., 2012, RCS of a target above a random rough surface with impedance boundaries using CO and PO methods., 2012, Qualitative imaging of penetrable scatterer using near-field data., 2013, Scattering of an object with impedance surfaces using IPO and MLFMM., 2014, Level set method as a technique to retrieve target shape from blurred indicator function., 2014, Transmitted fields of a directional antenna in proximity of a wall. IET Microwaves, Antennas and Propagation, 2015, 9, 176-184. Millimeter-wave imaging: A comparative study., 2016, Refocusing through clinder block walls., 2017, Zuarsmission and reflection characteristics of a multi-layered wall with doubly periodic interfaces. Approach. Advanced Electronicas and Communications, 2020, 117, 153087. Polarizability Extraction of Above-Half-Space Transversal Dipole Scatterers using a Fast Rowenguice Based Approach. Advanced Electronicas programs, 2015, 9, 164, 104-104-104-104-104-104-104-104-104-104-	Arrcu: IF FDTD and single scattering formulation for simulation of foliage canouflaged hard targets, 0, Image: Scattering formulation for simulation of foliage canouflaged hard targets, n.V.Fband., 0, A dual band printed zigzag anterna with two different bend angles., 2011, Image: Scattering from coated cracks for sub-millimeter wave applications by KP method., 2012, RCS of a target above a random rough surface with impedance boundaries using GO and PO methods., 2012, Image: Scattering of an object with impedance boundaries using GO and PO methods., 2012, Qualitative imaging of penetrable scatterer using near-field data., 2013, Image: Scattering of an object with impedance surfaces using IPO and MLFMM., 2014, Qualitative imaging of penetrable scatterer using near-field data., 2013, Image: Scattering of an object with impedance surfaces using IPO and MLFMM., 2014, Rest emethod as a technique to retrieve target shape from blured indicator function., 2014, Image: Scattering of a notified level set method for accurate physical and geometrical reconstruction., 2014, Informited fields of a directional antenna in proximity of a wall. IET Microwaves. Antennas and or program in the study., 2016, Image: Scattering of and the study., 2016, Inforumentional fields of a directional antenna in proximity of a wall. IET Microwaves. Antennas and or program in the study., 2016, Image: Scattering and and and the study. Scattering and and antennas Inforumentional fields of a directional antenna in proximity of a wall. IET Microwaves. Antennas and or program in the study., 2016, Image: Scattering antering

90 Metasurface Cavity Redirection Cloaking. , 2020, , .