Anup Tuladhar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Science Advances, 2016, 2, e1600519.	10.3	122
2	Supervised machine learning tools: a tutorial for clinicians. Journal of Neural Engineering, 2020, 17, 062001.	3.5	75
3	Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnology Advances, 2012, 30, 766-781.	11.7	68
4	A hydrogel composite system for sustained epi-cortical delivery of Cyclosporin A to the brain for treatment of stroke. Journal of Controlled Release, 2013, 166, 197-202.	9.9	66
5	Circumventing the blood–brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain. Journal of Controlled Release, 2015, 215, 1-11.	9.9	65
6	Injectable hydrogel enables local and sustained co-delivery to the brain: Two clinically approved biomolecules, cyclosporine and erythropoietin, accelerate functional recovery in rat model of stroke. Biomaterials, 2020, 235, 119794.	11.4	44
7	Local Delivery of Brain-Derived Neurotrophic Factor Enables Behavioral Recovery and Tissue Repair in Stroke-Injured Rats. Tissue Engineering - Part A, 2019, 25, 1175-1187.	3.1	40
8	Initial cell maturity changes following transplantation in a hyaluronan-based hydrogel and impacts therapeutic success in the stroke-injured rodent brain. Biomaterials, 2019, 192, 309-322.	11.4	36
9	Harnessing the Potential of Biomaterials for Brain Repair after Stroke. Frontiers in Materials, 2018, 5, .	2.4	31
10	Building machine learning models without sharing patient data: A simulation-based analysis of distributed learning by ensembling. Journal of Biomedical Informatics, 2020, 106, 103424.	4.3	24
11	Automatic Segmentation of Stroke Lesions in Non-Contrast Computed Tomography Datasets With Convolutional Neural Networks. IEEE Access, 2020, 8, 94871-94879.	4.2	20
12	The effect of retinal illuminance on visual motion priming. Vision Research, 2011, 51, 1137-1145.	1.4	17
13	Estimation of Mental Effort in Learning Visual Search by Measuring Pupil Response. PLoS ONE, 2011, 6, e21973.	2.5	16
14	An Analysis of the Vulnerability of Two Common Deep Learning-Based Medical Image Segmentation Techniques to Model Inversion Attacks. Sensors, 2021, 21, 3874.	3.8	12
15	Biomaterials driving repair after stroke. Nature Materials, 2018, 17, 573-574.	27.5	7
16	Modeling Neurodegeneration in silico With Deep Learning. Frontiers in Neuroinformatics, 2021, 15, 748370.	2.5	5
17	Stroke lesion localization in 3D MRI datasets with deep reinforcement learning. , 2022, , .		0