Tian-Ling Ren

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4283062/tian-ling-ren-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

242
papers7,885
citations43
h-index83
g-index300
ext. papers9,854
ext. citations6.9
avg, IF6.1
L-index

#	Paper	IF	Citations
242	Industrial-scale production of high-quality graphene sheets by millstone grinders. <i>Journal Physics D: Applied Physics</i> , 2022 , 55, 164002	3	1
241	High-Throughput DNA Tensioner Platform for Interrogating Mechanical Heterogeneity of Single Living Cells <i>Small</i> , 2022 , 18, e2106196	11	6
2 40	Impact of Molybdenum Oxide Electrode on the Ferroelectricity of Doped-Hafnia Oxide Capacitors. <i>IEEE Transactions on Electron Devices</i> , 2022 , 1-5	2.9	1
239	Mini-review: Novel Graphene-based Acoustic Devices. Sensors and Actuators Reports, 2022, 100086	4.7	1
238	A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors <i>Nano-Micro Letters</i> , 2022 , 14, 64	19.5	5
237	Vertical MoS transistors with sub-1-nm gate lengths <i>Nature</i> , 2022 , 603, 259-264	50.4	18
236	Electrooculography and Tactile Perception Collaborative Interface for 3D Human-Machine Interaction <i>ACS Nano</i> , 2022 ,	16.7	6
235	Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum <i>Science Advances</i> , 2022 , 8, eabn2156	14.3	11
234	Nomex paper-based double-sided laser-induced graphene for multifunctional human-machine interfaces. <i>Carbon</i> , 2022 , 193, 68-76	10.4	2
233	Ultrathin encapsulated rGO strain sensor for gesture recognition. <i>Microelectronic Engineering</i> , 2022 , 259, 111779	2.5	2
232	Biocompatible Sensors Are Revolutionizing Healthcare Technologies 2022 , 227-249		
231	Ultra-low Voltage Schmitt Triggers Implemented by HfO2-based Ferroelectric Field-Effect Transistors. <i>IEEE Electron Device Letters</i> , 2022 , 1-1	4.4	1
230	Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. <i>Applied Sciences</i> (Switzerland), 2022 , 12, 4526	2.6	1
229	Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 4370	2.6	2
228	The trend of 2D transistors toward integrated circuits: Scaling down and new mechanisms <i>Advanced Materials</i> , 2022 , e2201916	24	4
227	Intelligent and Multifunctional Graphene Nanomesh Electronic Skin with High Comfort. <i>Small</i> , 2021 , e2104810	11	14
226	Interfacial Regulation of Dielectric Properties in Ferroelectric Hf0.5Zr0.5O2 Thin Films. <i>IEEE Journal of the Electron Devices Society</i> , 2021 , 9, 1093-1097	2.3	

(2021-2021)

225	Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. <i>Physical Review B</i> , 2021 , 104,	3.3	5
224	Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor. <i>Molecules</i> , 2021 , 26,	4.8	3
223	Highly Stretchable and Conformal Electromagnetic Interference Shielding Armor with Strain Sensing Ability. <i>Chemical Engineering Journal</i> , 2021 , 133908	14.7	3
222	A 10hm Short Channel MoS2 Transistor without the Resolution Requirement of Photolithography. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100543	6.4	3
221	Graphene-Based Multifunctional Textile for Sensing and Actuating. ACS Nano, 2021,	16.7	11
220	Hippocampal Neurons[Alignment on Quartz Grooves and Parylene Cues on Quartz Substrate. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 275	2.6	3
219	Filling the gap: thermal properties and device applications of graphene. <i>Science China Information Sciences</i> , 2021 , 64, 1	3.4	3
218	Multifunctional Graphene Microstructures Inspired by Honeycomb for Ultrahigh Performance Electromagnetic Interference Shielding and Wearable Applications. <i>ACS Nano</i> , 2021 , 15, 8907-8918	16.7	36
217	The manufacture and characterization of a novel ultrasonic transducer for medical imaging 2021,		1
216	Compact, Flexible, and Transparent Antennas Based on Embedded Metallic Mesh for Wearable Devices in 5G Wireless Network. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 69, 1864-1873	4.9	13
215	Gate-Tunable Negative Differential Resistance Behaviors in a hBN-Encapsulated BP-MoS Heterojunction. <i>ACS Applied Materials & </i>	9.5	7
214	The Origin of CBRAM With High Linearity, On/Off Ratio, and State Number for Neuromorphic Computing. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 2568-2571	2.9	5
213	Roll-to-roll graphene films for non-disposable electrocardiogram electrodes. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 364003	3	3
212	Observation of negative capacitance in antiferroelectric PbZrO Films. <i>Nature Communications</i> , 2021 , 12, 4215	17.4	5
211	Stability diagrams of two optically mutual-injected quantum cascade lasers. AIP Advances, 2021, 11, 01	531219	
210	A Shoe-Integrated Sensor System for Long-Term Center of Pressure Evaluation. <i>IEEE Sensors Journal</i> , 2021 , 1-1	4	1
209	Enhancing the Ultraviolet Photocurrent and Response Speed of Zinc Oxide Nanoflowers using Surface Plasmons of Gold Nanoparticles and a Graphene Membrane. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2000512	2.5	1
208	High-performance single crystal CH3NH3PbI3 perovskite x-ray detector. <i>Applied Physics Letters</i> , 2021 , 118, 063506	3.4	8

207	Ultrahigh Step-Up Coupled-Inductor DC-DC Converter With Soft-Switching for Driving Piezoelectric Actuators. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 68, 2902-2906	3.5	2
206	Reconfigurable Logic-Memory Hybrid Device Based on Ferroelectric Hf0.5Zr0.5O2. <i>IEEE Electron Device Letters</i> , 2021 , 42, 1164-1167	4.4	8
205	Self-Powered Multicolor Broadband Photodetector Based on GaSe/WSeII/WSeIIBP Van Der Waals Heterostructure. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 3881-3886	2.9	О
204	Black phosphorus junctions and their electrical and optoelectronic applications. <i>Journal of Semiconductors</i> , 2021 , 42, 081001	2.3	5
203	An Integrated Luminescent Information Encryption Decryption and Anticounterfeiting Chip Based on Laser Induced Graphene. <i>Advanced Functional Materials</i> , 2021 , 31, 2103255	15.6	5
202	Reconfigurable MoTe2 Field-Effect Transistors and its Application in Compact CMOS Circuits. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 4748-4753	2.9	2
201	Fabricating In-Plane MoTe2 p-n Homojunction Photodetector Using Laser-Induced p-Type Doping. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 4485-4490	2.9	1
200	Ambipolar transport compact models for two-dimensional materials based field-effect transistors. <i>Tsinghua Science and Technology</i> , 2021 , 26, 574-591	3.4	1
199	Transistor Subthreshold Swing Lowered by 2-D Heterostructures. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 411-414	2.9	1
198	A review on low-dimensional novel optoelectronic devices based on carbon nanotubes. <i>AIP Advances</i> , 2021 , 11, 110701	1.5	1
197	A Miniaturized Integrated SAW Sensing System for Relative Humidity Based on Graphene Oxide Film. <i>IEEE Sensors Journal</i> , 2020 , 20, 9733-9739	4	6
196	Fabrication and Characterization of Ferroelectric HfZrO-based Synaptic Transistors with Multi-state Plasticity 2020 ,		3
195	High Performance and Wireless Graphene Earphone towards Practical Applications 2020,		1
194	Encapsulated X-Ray Detector Enabled by All-Inorganic Lead-Free Perovskite Film With High Sensitivity and Low Detection Limit. <i>IEEE Transactions on Electron Devices</i> , 2020 , 67, 3191-3198	2.9	15
193	Fabrication and Characterization of a Novel Si Line Tunneling TFET With High Drive Current. <i>IEEE Journal of the Electron Devices Society</i> , 2020 , 8, 336-340	2.3	15
192	Graphene-Based Thermoacoustic Sound Source. ACS Nano, 2020, 14, 3779-3804	16.7	12
191	Lower Power, Better Uniformity, and Stability CBRAM Enabled by Graphene Nanohole Interface Engineering. <i>IEEE Transactions on Electron Devices</i> , 2020 , 67, 984-988	2.9	4
190	Thermal Energy Conversion: Graphene-Based Devices for Thermal Energy Conversion and Utilization (Adv. Funct. Mater. 8/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070052	15.6	

(2019-2020)

189	Utilization of Synergistic Effect of Dimension-Differentiated Hierarchical Nanomaterials for Transparent and Flexible Wireless Communicational Elements. <i>Advanced Materials Technologies</i> , 2020 , 5, 1901057	6.8	2	
188	Ultrafast Photodetector by Integrating Perovskite Directly on Silicon Wafer. ACS Nano, 2020 , 14, 2860-	-2 86 8⁄	52	
187	. IEEE Transactions on Electron Devices, 2020 , 67, 2153-2156	2.9	11	
186	Highly Transparent and Sensitive Graphene Sensors for Continuous and Non-invasive Intraocular Pressure Monitoring. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 18375-18384	9.5	25	
185	High-Quality Single Crystal Perovskite for Highly Sensitive X-Ray Detector. <i>IEEE Electron Device Letters</i> , 2020 , 41, 256-259	4.4	19	
184	Fabricating Molybdenum Disulfide Memristors. ACS Applied Electronic Materials, 2020, 2, 346-370	4	10	
183	Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. <i>ACS Applied Materials</i> & amp; Interfaces, 2020 , 12, 49945-49956	9.5	21	
182	Triode-Mimicking Graphene Pressure Sensor with Positive Resistance Variation for Physiology and Motion Monitoring. <i>ACS Nano</i> , 2020 , 14, 10104-10114	16.7	79	
181	Flexible Quasi-van der Waals Ferroelectric Hafnium-Based Oxide for Integrated High-Performance Nonvolatile Memory. <i>Advanced Science</i> , 2020 , 7, 2001266	13.6	15	
180	Anomalous thermoacoustic effect in topological insulator for sound applications. <i>Applied Physics Letters</i> , 2020 , 117, 123502	3.4	1	
179	Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. <i>Carbon</i> , 2020 , 156, 253-260	10.4	45	
178	Graphene-Based Devices for Thermal Energy Conversion and Utilization. <i>Advanced Functional Materials</i> , 2020 , 30, 1903888	15.6	18	
177	Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. <i>Small</i> , 2020 , 16, e1901124	11	52	
176	Graphene-based wearable sensors. <i>Nanoscale</i> , 2019 , 11, 18923-18945	7.7	50	
175	Graphene based Wearable Sensors for Healthcare 2019,		3	
174	Flexible Two-Dimensional TiC MXene Films as Thermoacoustic Devices. <i>ACS Nano</i> , 2019 , 13, 12613-126	20 6.7	28	
173	Ultra-High Sensitive NO Gas Sensor Based on Tunable Polarity Transport in CVD-WS/IGZO p-N Heterojunction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 40850-40859	9.5	55	
172	Two-Mode MoS Filament Transistor with Extremely Low Subthreshold Swing and Record High On/Off Ratio. <i>ACS Nano</i> , 2019 , 13, 2205-2212	16.7	17	

171	Tunable electronic and optical properties of the WS/IGZO heterostructure via an external electric field and strain: a theoretical study. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 14713-14721	3.6	3
170	Laser-reconfigured MoS/ZnO van der Waals synapse. <i>Nanoscale</i> , 2019 , 11, 11114-11120	7.7	10
169	Photoelectric Synaptic Plasticity Realized by 2D Perovskite. <i>Advanced Functional Materials</i> , 2019 , 29, 1902538	15.6	77
168	X-Ray Detector Based on All-Inorganic Lead-Free Cs2AgBiBr6 Perovskite Single Crystal. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 2224-2229	2.9	38
167	Switching dynamics of ferroelectric HfO2-ZrO2 with various ZrO2 contents. <i>Applied Physics Letters</i> , 2019 , 114, 142902	3.4	24
166	Simultaneous synthesis and integration of two-dimensional electronic components. <i>Nature Electronics</i> , 2019 , 2, 164-170	28.4	54
165	Negative Capacitance Oxide Thin-Film Transistor With Sub-60 mV/Decade Subthreshold Swing. <i>IEEE Electron Device Letters</i> , 2019 , 40, 826-829	4.4	17
164	High sensitive surface-acoustic-wave optical sensor based on two-dimensional perovskite 2019 ,		1
163	Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	18
162	A Wearable Skinlike Ultra-Sensitive Artificial Graphene Throat. ACS Nano, 2019, 13, 8639-8647	16.7	45
161	A novel thermal acoustic device based on vertical graphene film. AIP Advances, 2019, 9, 075302	1.5	5
160	Light-Enhanced Ion Migration in Two-Dimensional Perovskite Single Crystals Revealed in Carbon Nanotubes/Two-Dimensional Perovskite Heterostructure and Its Photomemory Application. <i>ACS Central Science</i> , 2019 , 5, 1857-1865	16.8	23
159	Plasmon-Enhanced InGaZnO Ultraviolet Photodetectors Tuned by Ferroelectric HfZrO. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900588	6.4	9
158	Graphene-Based Synaptic Devices for Neuromorphic Applications 2019 , 99-142		
157	Dual-Functional Nonvolatile and Volatile Memory in Resistively Switching Indium Tin Oxide/HfOx Devices. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1900555	1.6	1
156	Development of a portable setup using a miniaturized and high precision colorimeter for the estimation of phosphate in natural water. <i>Analytica Chimica Acta</i> , 2019 , 1058, 70-79	6.6	8
155	A contact lens promising for non-invasive continuous intraocular pressure monitoring <i>RSC Advances</i> , 2019 , 9, 5076-5082	3.7	20
154	An efficient flexible graphene-based light-emitting device. <i>Nanoscale Advances</i> , 2019 , 1, 4745-4754	5.1	14

(2018-2019)

153	Au Nanoparticles-Decorated Surface Plasmon Enhanced ZnO Nanorods Ultraviolet Photodetector on Flexible Transparent Mica Substrate. <i>IEEE Journal of the Electron Devices Society</i> , 2019 , 1-1	2.3	12
152	Negative Capacitance Black Phosphorus Transistors With Low SS. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 1579-1583	2.9	10
151	Proton Conductor Gated Synaptic Transistor Based on Transparent IGZO for Realizing Electrical and UV Light Stimulus. <i>IEEE Journal of the Electron Devices Society</i> , 2019 , 7, 38-45	2.3	15
150	A Hybrid Phototransistor Neuromorphic Synapse. <i>IEEE Journal of the Electron Devices Society</i> , 2019 , 7, 13-17	2.3	8
149	Design and Characterization of High-Density Ultrasonic Transducer Array. <i>IEEE Sensors Journal</i> , 2018 , 18, 2285-2290	4	10
148	Graphene devices based on laser scribing technology. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 041	FA04	7
147	Demonstration of ⊞nGaZnO TFT Nonvolatile Memory Using TiAlO Charge Trapping Layer. <i>IEEE Nanotechnology Magazine</i> , 2018 , 17, 1089-1093	2.6	6
146	All-Inorganic Perovskite Nanowires-InGaZnO Heterojunction for High-Performance Ultraviolet-Visible Photodetectors. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 7231-7238	9.5	40
145	. IEEE Transactions on Nuclear Science, 2018 , 65, 473-477	1.7	O
144	Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. <i>ACS Nano</i> , 2018 , 12, 2346-2354	16.7	361
143	Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor. <i>ACS Applied Materials & District Materials & Distric</i>	9.5	85
142	Controlled Growth of Bilayer-MoS2 Films and MoS2-Based Field-Effect Transistor (FET) Performance Optimization. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700524	6.4	13
141	Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection. <i>Scientific Reports</i> , 2018 , 8, 5107	4.9	16
140	A Graphene-Based Filament Transistor with Sub-10 mVdecfl Subthreshold Swing. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700608	6.4	12
139	Graphene FET Array Biosensor Based on ssDNA Aptamer for Ultrasensitive Hg Detection in Environmental Pollutants. <i>Frontiers in Chemistry</i> , 2018 , 6, 333	5	34
138	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018 , 12, 8839-8846	16.7	180
137	Field effect properties of single-layer MoS2(1½)Se2x nanosheets produced by a one-step CVD process. <i>Journal of Materials Science</i> , 2018 , 53, 14447-14455	4.3	3
136	Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. <i>ACS Nano</i> , 2018 , 12, 9134-9141	16.7	284

135	A Review on Bacteriorhodopsin-Based Bioelectronic Devices. Sensors, 2018, 18,	3.8	27
134	Locally hydrazine doped WSe p-n junction toward high-performance photodetectors. Nanotechnology, 2018 , 29, 015203	3.4	22
133	A novel cell-scale bio-nanogenerator based on electron-ion interaction for fast light power conversion. <i>Nanoscale</i> , 2018 , 10, 526-532	7.7	7
132	Interface Engineering with MoS -Pd Nanoparticles Hybrid Structure for a Low Voltage Resistive Switching Memory. <i>Small</i> , 2018 , 14, 1702525	11	37
131	Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. <i>Nano Research</i> , 2018 , 11, 3233-3243	10	38
130	Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry. <i>Nanoscale</i> , 2018 , 10, 20013-20019	7.7	25
129	Ink-injected dual-band antennas based on graphene flakes, carbon nanotubes and silver nanowires <i>RSC Advances</i> , 2018 , 8, 37534-37539	3.7	3
128	High Performance 2D Perovskite/Graphene Optical Synapses as Artificial Eyes 2018,		13
127	First Principles Study of Memory Selectors using Heterojunctions of 2D Layered Materials 2018,		2
126	Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 44173-44182	9.5	22
125	Self-Powered MoS2PDPP3T Heterotransistor-Based Broadband Photodetectors. <i>Advanced Electronic Materials</i> , 2018 , 5, 1800580	6.4	10
124	High-Quality Reconfigurable Black Phosphorus p-n Junctions. <i>IEEE Transactions on Electron Devices</i> , 2018 , 1-5	2.9	3
123	Toward an In Situ Phosphate Sensor in Natural Waters Using a Microfluidic Flow Loop Analyzer. Journal of the Electrochemical Society, 2018 , 165, B737-B745	3.9	8
122	Gait Recognition Based on Graphene Porous Network Structure Pressure Sensors for Rehabilitation Therapy 2018 ,		4
121	Millimeter-Scale Nonlocal Photo-Sensing Based on Single-Crystal Perovskite Photodetector. <i>IScience</i> , 2018 , 7, 110-119	6.1	8
120	Direct laser-patterned ultra-wideband antennae with carbon nanotubes RSC Advances, 2018, 8, 31331	-3 ₃ 1 3 36	;
119	Wearable humidity sensor based on porous graphene network for respiration monitoring. <i>Biosensors and Bioelectronics</i> , 2018 , 116, 123-129	11.8	172
118	An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. <i>Nanoscale</i> , 2018 , 10, 11524-11530	7.7	57

(2017-2018)

117	MoS2 Synaptic Transistor With Tunable Weight Profile. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 3543-3547	2.9	8
116	An intelligent artificial throat with sound-sensing ability based on laser induced graphene. <i>Nature Communications</i> , 2017 , 8, 14579	17.4	275
115	Simulation and experimental verification of silicon dioxide deposition by PECVD. <i>Modern Physics Letters B</i> , 2017 , 31, 1750055	1.6	O
114	High-performance sound source devices based on graphene woven fabrics. <i>Applied Physics Letters</i> , 2017 , 110, 093110	3.4	9
113	Low-Voltage Unipolar Inverter Based on Top-Gate Electric-Double-Layer Thin-Film Transistors Gated by Silica Proton Conductor. <i>IEEE Electron Device Letters</i> , 2017 , 38, 875-878	4.4	6
112	Novel Field Effect Transistor Fabrication Based on Non-Graphene 2D Materials. <i>MRS Advances</i> , 2017 , 2, 3675-3684	0.7	
111	High-performance graphene-based flexible heater for wearable applications. <i>RSC Advances</i> , 2017 , 7, 27001-27006	3.7	66
110	Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. <i>Nanoscale</i> , 2017 , 9, 8266-8273	7.7	76
109	Top-Gate Electric-Double-Layer IZO-Based Synaptic Transistors for Neuron Networks. <i>IEEE Electron Device Letters</i> , 2017 , 38, 588-591	4.4	24
108	Long-Term Depression Mimicked in an IGZO-Based Synaptic Transistor. <i>IEEE Electron Device Letters</i> , 2017 , 38, 191-194	4.4	39
107	Flexible graphene sound device based on laser reduced graphene. <i>Applied Physics Letters</i> , 2017 , 111, 103104	3.4	18
106	Synaptic Computation Demonstrated in a Two-Synapse Network Based on Top-Gate Electric-Double-Layer Synaptic Transistors. <i>IEEE Electron Device Letters</i> , 2017 , 38, 1496-1499	4.4	13
105	Efficient and Reversible Electron Doping of Semiconductor-Enriched Single-Walled Carbon Nanotubes by Using Decamethylcobaltocene. <i>Scientific Reports</i> , 2017 , 7, 6751	4.9	29
104	A Ferroelectric Thin Film Transistor Based on Annealing-Free HfZrO Film. <i>IEEE Journal of the Electron Devices Society</i> , 2017 , 5, 378-383	2.3	26
103	Large-Scale and High-Density pMUT Array Based on Isolated Sol-Gel PZT Membranes for Fingerprint Imaging. <i>Journal of the Electrochemical Society</i> , 2017 , 164, B377-B381	3.9	10
102	Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano, 2017, 11, 8790-8795	16.7	381
101	Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing. <i>ACS Nano</i> , 2017 , 11, 12247-12256	16.7	201
100	Tailoring perpendicular magnetic anisotropy with graphene oxide membranes. <i>RSC Advances</i> , 2017 , 7, 52938-52944	3.7	1

99	A super flexible and custom-shaped graphene heater. <i>Nanoscale</i> , 2017 , 9, 14357-14363	7.7	44
98	A power manager system with 78% efficiency for high-voltage triboelectric nanogenerators. <i>Science China Information Sciences</i> , 2017 , 60, 1	3.4	
97	Surface Acoustic Wave Devices Based on High Quality Temperature-Compensated Substrates. <i>IEEE Electron Device Letters</i> , 2016 , 37, 1063-1066	4.4	5
96	Tunable graphene oxide reduction and graphene patterning at room temperature on arbitrary substrates. <i>Carbon</i> , 2016 , 109, 173-181	10.4	23
95	High performance flexible strain sensor based on self-locked overlapping graphene sheets. <i>Nanoscale</i> , 2016 , 8, 20090-20095	7.7	87
94	Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors. <i>Advanced Materials</i> , 2016 , 28, 6640-8	24	584
93	A point acoustic device based on aluminum nanowires. <i>Nanoscale</i> , 2016 , 8, 5516-25	7.7	11
92	A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10,000 W m(-3) . <i>Nanoscale</i> , 2016 , 8, 3539-47	7.7	71
91	A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene. <i>Nanomaterials</i> , 2016 , 6,	5.4	15
90	A comparison of Pd and Au electrodes-based LiNbO3 surface acoustic wave devices. <i>Modern Physics Letters B</i> , 2016 , 30, 1650349	1.6	2
89	A Low Input Current and Wide Conversion Ratio Buck Regulator with 75% Efficiency for High-Voltage Triboelectric Nanogenerators. <i>Scientific Reports</i> , 2016 , 6, 19246	4.9	14
88	High performance photodetector based on Pd-single layer MoS2 Schottky junction. <i>Applied Physics Letters</i> , 2016 , 109, 201904	3.4	13
87	A novel thermal acoustic device based on porous graphene. AIP Advances, 2016, 6, 015105	1.5	9
86	Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26458-26462	9.5	285
85	Wearable Strain Sensors: Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors (Adv. Mater. 31/2016). <i>Advanced Materials</i> , 2016 , 28, 6639	24	11
84	Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. <i>NPG Asia Materials</i> , 2015 , 7, e154-e154	10.3	46
83	A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. <i>Scientific Reports</i> , 2015 , 5, 8603	4.9	329
82	Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets. <i>Scientific Reports</i> , 2015 , 5, 10582	4.9	23

(2014-2015)

81	A spectrally tunable all-graphene-based flexible field-effect light-emitting device. <i>Nature Communications</i> , 2015 , 6, 7767	17.4	97
8o	A pressure sensing system for heart rate monitoring with polymer-based pressure sensors and an anti-interference post processing circuit. <i>Sensors</i> , 2015 , 15, 3224-35	3.8	57
79	Controllable thermal rectification realized in binary phase change composites. <i>Scientific Reports</i> , 2015 , 5, 8884	4.9	43
78	Graphene Dynamic Synapse with Modulatable Plasticity. <i>Nano Letters</i> , 2015 , 15, 8013-9	11.5	180
77	A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory. <i>Nanoscale</i> , 2015 , 7, 17306-11	7.7	36
76	Zno field-effect transistors with lead-zirconate-titanate ferroelectric gate. <i>Materials Research Innovations</i> , 2015 , 19, S2-181-S2-184	1.9	2
75	Memory Devices: In Situ Tuning of Switching Window in a Gate-Controlled Bilayer Graphene-Electrode Resistive Memory Device (Adv. Mater. 47/2015). <i>Advanced Materials</i> , 2015 , 27, 776	66 -1 766	5 ¹
74	Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. <i>Scientific Reports</i> , 2015 , 5, 15554	4.9	43
73	In Situ Tuning of Switching Window in a Gate-Controlled Bilayer Graphene-Electrode Resistive Memory Device. <i>Advanced Materials</i> , 2015 , 27, 7767-74	24	40
72	A flexible, transparent and ultrathin single-layer graphene earphone. RSC Advances, 2015, 5, 17366-173	8 7 31.7	31
71	Wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devices. <i>Scientific Reports</i> , 2014 , 4, 3598	4.9	84
70	Novel field-effect Schottky barrier transistors based on graphene-MoS2 heterojunctions. <i>Scientific Reports</i> , 2014 , 4, 5951	4.9	115
69	A micro-scale microbial supercapacitor 2014 ,		1
68	Graphene earphones: entertainment for both humans and animals. <i>ACS Nano</i> , 2014 , 8, 5883-90	16.7	85
67	Scalable fabrication of high-performance and flexible graphene strain sensors. <i>Nanoscale</i> , 2014 , 6, 699-	-7 9.5	287
66	Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations. <i>ACS Nano</i> , 2014 , 8, 10766-73	16.7	39
65	Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology. <i>Nano Letters</i> , 2014 , 14, 3214-9	11.5	93
64	PROTON IRRADIATION INFLUENCE ON THE MAGNETIC PROPERTIES OF GMR-SVs. <i>Modern Physics Letters B</i> , 2014 , 28, 1450022	1.6	2

63	REACTION SIMULATION AND EXPERIMENT OF A Cl2/Ar INDUCTIVELY COUPLED PLASMA FOR ETCHING OF SILICON. <i>Surface Review and Letters</i> , 2014 , 21, 1450038	1.1	2
62	Large-scale fabrication of graphene-based electronic and MEMS devices 2014 ,		1
61	Modeling and analysis of nano-sized GMRs based on Co, NiFe and Ni materials. <i>Science China Information Sciences</i> , 2014 , 57, 1-14	3.4	
60	Magnetoresistive behavior and magnetization reversal of NiFe/Cu/CoFe/IrMn spin valve GMRs in nanoscale. <i>International Journal of Minerals, Metallurgy and Materials</i> , 2013 , 20, 700-704	3.1	5
59	Flexible and large-area sound-emitting device using reduced graphene oxide 2013,		3
58	A reduced graphene oxide sound-emitting device: a new use for Joule heating. <i>RSC Advances</i> , 2013 , 3, 17672	3.7	20
57	Temperature Control of P(VDF-TrFE) Copolymer Thin Films. <i>Integrated Ferroelectrics</i> , 2013 , 141, 187-19	94 0.8	28
56	Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. <i>Energy and Environmental Science</i> , 2013 , 6, 108-115	35.4	134
55	Effects of anode materials on resistive characteristics of NiO thin films. <i>Applied Physics Letters</i> , 2013 , 102, 042901	3.4	14
54	Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode. <i>Nano Letters</i> , 2013 , 13, 651-7	11.5	106
53	Ambipolar/unipolar conversion in graphene transistors by surface doping. <i>Applied Physics Letters</i> , 2013 , 103, 193502	3.4	8
52	Enhanced dielectric and multiferroic properties of single-phase Y and Zr co-doped BiFeO3 ceramics. Journal of Applied Physics, 2013, 114, 154103	2.5	47
51	SIMULATION METHODS OF PIEZORESISTIVE PRESSURE SENSORS IN ORDER TO IMPROVE CONSISTENCY. <i>Modern Physics Letters B</i> , 2013 , 27, 1350011	1.6	1
50	Temperature dependence of optical and structural properties of ferroelectric B3.15Nd0.85Ti3O12 thin film derived by solgel process. <i>Journal of Sol-Gel Science and Technology</i> , 2012 , 61, 236-242	2.3	5
49	Optimization of graphene/silicon heterojunction solar cells 2012,		3
48	Comparative Study on Structural and Ferroelectric Properties of Dual-Site Rare-Earth Ions Substituted Multiferroelectric BiFeO3. <i>Integrated Ferroelectrics</i> , 2012 , 132, 30-38	0.8	5
47	Unipolar to ambipolar conversion in graphene field-effect transistors. <i>Applied Physics Letters</i> , 2012 , 101, 253505	3.4	15
46	Light-Induced Modulation in Resistance Switching of Carbon Nanotube/ BiFeO3/Pt Heterostructure. <i>Integrated Ferroelectrics</i> , 2012 , 132, 53-60	0.8	

45	Static behavior of a graphene-based sound-emitting device. <i>Nanoscale</i> , 2012 , 4, 3345-9	7.7	25
44	Micromachined piezoelectric devices for acoustic applications 2012,		1
43	Single-layer graphene sound-emitting devices: experiments and modeling. <i>Nanoscale</i> , 2012 , 4, 2272-7	7.7	76
42	Design of magnetic RF inductor in CMOS. <i>Tsinghua Science and Technology</i> , 2012 , 17, 78-83	3.4	7
41	Resistive switching behavior in diamond-like carbon films grown by pulsed laser deposition for resistance switching random access memory application. <i>Journal of Applied Physics</i> , 2012 , 111, 084501	2.5	27
40	Investigation of the improved performance in a graphene/polycrystalline BiFeO3/Pt photovoltaic heterojunction: Experiment, modeling, and application. <i>Journal of Applied Physics</i> , 2012 , 112, 054103	2.5	20
39	Influence of La and Mn dopants on the current-voltage characteristics of BiFeO3/ZnO heterojunction. <i>Journal of Applied Physics</i> , 2012 , 111, 074101	2.5	34
38	Electrode/oxide interface engineering by inserting single-layer graphene: Application for HfOx-based resistive random access memory 2012 ,		7
37	Light-Induced Modulation in Resistance Switching of Carbon Nanotube/BiFeO3/Pt Heterostructure. <i>Integrated Ferroelectrics</i> , 2012 , 134, 58-64	0.8	3
36	Enhanced photovoltaic properties in graphene/polycrystalline BiFeO3/Pt heterojunction structure. <i>Applied Physics Letters</i> , 2011 , 99, 132904	3.4	91
35	Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. <i>Applied Physics Letters</i> , 2011 , 99, 233505	3.4	68
34	Transparent, flexible, ultrathin sound source devices using Indium Tin oxide films. <i>Applied Physics Letters</i> , 2011 , 99, 043503	3.4	45
33	Graphene-on-paper sound source devices. ACS Nano, 2011, 5, 4878-85	16.7	164
32	Comparisons and analyses on heterostructures consisting of ZnO and different ferroelectric films. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1368, 1		2
31	Surface acoustic wave characteristics based on c-axis (006) LiNbO3/diamond/silicon layered structure. <i>Applied Physics Letters</i> , 2011 , 99, 022109	3.4	13
30	Modulation Effect of Lead Zirconate Titanate for Zinc Oxide Channel Resistance in Ferroelectric Field Effect Transistor. <i>Ferroelectrics</i> , 2011 , 421, 92-97	0.6	4
29	Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film. <i>Applied Physics Letters</i> , 2011 , 99, 253507	3.4	37
28	Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic, ultrathin, and transparent sound-emitting device. <i>Applied Physics Letters</i> , 2011 , 99, 233503	3.4	23

27	Study of Iridium Bottom Electrode in Ferroelectric Random Access Memory Application. <i>Ferroelectrics</i> , 2010 , 406, 97-107	0.6	1
26	A metrology of silicon film thermal conductivity using micro-Raman spectroscopy 2010 ,		3
25	Ultrasonic transducer array design for medical imaging based on MEMS technologies 2010,		6
24	A novel fatigue-insensitive self-referenced scheme for 1T1C FRAM 2010 ,		1
23	Characteristics of Pt/BiFeO3/TiO2/Si capacitors with TiO2 layer formed by liquid-delivery metal organic chemical vapor deposition. <i>Applied Physics Letters</i> , 2010 , 97, 172901	3.4	12
22	Comparison of PbZr1\(\text{\textit{T}}\)TixO3 thin films deposited on different substrates by liquid delivery metal organic chemical vapor deposition. Journal of Applied Physics, 2009, 105, 061611	2.5	
21	Optimal RF IC design based on Fuzzy Genetic Algorithm 2009,		1
20	Fabrication and Properties of \$hbox{Pt}/hbox{Bi}_{3.15}hbox{Nd}_{0.85} hbox{Ti}_{3}hbox{O}_{12}/breakhbox{HfO}_{2}/hbox{Si}\$ Structure for Ferroelectric DRAM (FEDRAM) FET. <i>IEEE Electron Device Letters</i> , 2009 , 30, 463-465	4.4	5
19	Structural, ferroelectric, dielectric, and magnetic properties of BiFeO3/Bi3.15Nd0.85Ti3O12 multilayer films derived by chemical solution deposition. <i>Journal of Applied Physics</i> , 2009 , 105, 084109	2.5	20
18	Characterization of Pt/Bi3.15Nd0.85Ti3O12/HfO2/Si structure using a hafnium oxide as buffer layer for ferroelectric-gate field effect transistors. <i>Journal of Applied Physics</i> , 2009 , 106, 114117	2.5	12
17	A multi-frequency wireless passive pressure sensor for TPMS applications 2009,		1
16	Withdrawal of "Fabrication and Properties of \$ hbox{Pt}/hbox{Bi}_{3.15}hbox{Nd}_{0.85}hbox{Ti}_{3}hbox{O}_{12}/hbox{HfO}_{2}/hbox{Si}\$ Structure for Ferroelectric DRAM (FEDRAM) FET". <i>IEEE Electron Device Letters</i> , 2009 , 30, 1111-1111	4.4	3
15	NOVEL DEVICE DESIGN FOR AN ULTRASONIC RANGING SYSTEM. <i>Integrated Ferroelectrics</i> , 2009 , 105, 53-65	0.8	4
14	A novel MEMS pressure sensor with MOSFET on chip 2008,		17
13	OPTICAL CHARACTERIZATION OF Sr1\(\mathbb{B}\) BaxBi4Ti4O15 GRADED THIN FILMS. Integrated Ferroelectrics, 2008 , 98, 128-135	0.8	
12	DEVICE DESIGN FOR THE NOVEL HANDWRITING RECOGNITION SYSTEM. <i>Integrated Ferroelectrics</i> , 2008 , 100, 206-215	0.8	5
11	AN INNOVATED PROCESS OF Pt/PbTiO3/PbZr0.3Ti0.7O3/PbTiO3/Pt INTEGRATED FERROELECTRIC CAPACITORS FOR FeRAM. <i>Integrated Ferroelectrics</i> , 2007 , 89, 3-11	0.8	4
10	UNIFORMITY IMPROVEMENT OF PZT BASED ULTRASONIC TRANSDUCER. <i>Integrated Ferroelectrics</i> , 2006 , 80, 373-381	0.8	5

LIST OF PUBLICATIONS

9	Measurements of Ferroelectric MEMS Microphones. <i>Integrated Ferroelectrics</i> , 2005 , 69, 417-429	0.8	4
8	Key Integration Techniques and Issues for Silicon-Based Ferroelectric Devices. <i>Integrated Ferroelectrics</i> , 2004 , 66, 59-69	0.8	1
7	A novel ferroelectric based microphone. <i>Microelectronic Engineering</i> , 2003 , 66, 683-687	2.5	7
6	Piezoelectric and ferroelectric films for microelectronic applications. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 99, 159-163	3.1	24
5	Studies of a PT/PZT/PT sandwich structure for feram applications using sol-gel processing. <i>Integrated Ferroelectrics</i> , 2001 , 39, 215-222	0.8	3
4	Review on OrganicIhorganic Two-Dimensional Perovskite-Based Optoelectronic Devices. <i>ACS Applied Electronic Materials</i> ,	4	4
3	Recent progress of continuous intraocular pressure monitoring. Nano Select,	3.1	1
2	Anisotropic electrical properties of aligned PtSe2 nanoribbon arrays grown by a pre-patterned selective selenization process. <i>Nano Research</i> ,1	10	
1	Skin-Mimicking, Stretchable Photodetector for Skin-Customized Ultraviolet Dosimetry. <i>Advanced Materials Technologies</i> ,2101348	6.8	1