
Angelo De Santis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4282949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure, Materials and Processes in the Earth's Core and Mantle. Surveys in Geophysics, 2022, 43, 263-302.	4.6	10
2	Swarm-TEC Satellite Measurements as a Potential Earthquake Precursor Together With Other Swarm and CSES Data: The Case of Mw7.6 2019 Papua New Guinea Seismic Event. Frontiers in Earth Science, 2022, 10, .	1.8	16
3	Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake. Remote Sensing, 2022, 14, 1582.	4.0	14
4	Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sensing, 2022, 14, 2649.	4.0	24
5	Is the Apparent Correlation between Solar-Geomagnetic Activity and Occurrence of Powerful Earthquakes a Casual Artifact?. Atmosphere, 2022, 13, 1131.	2.3	7
6	South Atlantic Anomaly Areal Extent as a Possible Indicator of Geomagnetic Jerks in the Satellite Era. Frontiers in Earth Science, 2021, 8, .	1.8	4
7	Integrating Pre-Earthquake Signatures From Different Precursor Tools. IEEE Access, 2021, 9, 33268-33283.	4.2	33
8	lonospheric Response Over Brazil to the August 2018 Geomagnetic Storm as Probed by CSESâ€01 and Swarm Satellites and by Local Groundâ€Based Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028368.	2.4	45
9	Characteristic periods of the paleosecular variation of the Earth's magnetic field during the Holocene from global paleoreconstructions. Physics of the Earth and Planetary Interiors, 2021, 312, 106656.	1.9	5
10	Initial scalar lithospheric magnetic anomaly map of China and surrounding regions derived from CSES satellite data. Science China Technological Sciences, 2021, 64, 1118-1126.	4.0	5
11	Pre-Earthquake Ionospheric Perturbation Identification Using CSES Data via Transfer Learning. Frontiers in Environmental Science, 2021, 9, .	3.3	11
12	SafeNet: SwArm for Earthquake Perturbations Identification Using Deep Learning Networks. Remote Sensing, 2021, 13, 5033.	4.0	10
13	Editorial of Special Issue "Detecting Geospace Perturbations Caused by Earth― Geosciences (Switzerland), 2021, 11, 496.	2.2	0
14	Magnetic Field and Electron Density Anomalies from Swarm Satellites Preceding the Major Earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) Seismic Sequence. Pure and Applied Geophysics, 2020, 177, 305-319.	1.9	31
15	Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. Journal of Asian Earth Sciences, 2020, 188, 104097.	2.3	57
16	Ionosonde Data Analysis in Relation to the 2016 Central Italian Earthquakes. Geosciences (Switzerland), 2020, 10, 354.	2.2	6
17	A Multiparametric Approach to Study the Preparation Phase of the 2019 M7.1 Ridgecrest (California,) Tj ETQq	1 1 0,78431 1.8	l4 rgBT /Ove

¹⁸ The First Pi2 Pulsation Observed by China Seismo-Electromagnetic Satellite. Remote Sensing, 2020, 12, 2300.

4.0 7

#	Article	IF	CITATIONS
19	Swarm Satellite Magnetic Field Data Analysis Prior to 2019 Mw = 7.1 Ridgecrest (California, USA) Earthquake. Geosciences (Switzerland), 2020, 10, 502.	2.2	11
20	Multi-Parametric Climatological Analysis Reveals the Involvement of Fluids in the Preparation Phase of the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan Earthquakes. Remote Sensing, 2020, 12, 1663.	4.0	11
21	Revised Accelerated Moment Release Under Test: Fourteen Worldwide Real Case Studies in 2014–2018 and Simulations. Pure and Applied Geophysics, 2020, 177, 4057-4087.	1.9	13
22	Co-Seismic Magnetic Field Perturbations Detected by Swarm Three-Satellite Constellation. Remote Sensing, 2020, 12, 1166.	4.0	12
23	Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere, 2019, 10, 371.	2.3	46
24	Geosystemics View of Earthquakes. Entropy, 2019, 21, 412.	2.2	29
25	Pre-earthquake chain processes detected from ground to satellite altitude in preparation of the 2016–2017 seismic sequence in Central Italy. Remote Sensing of Environment, 2019, 229, 93-99.	11.0	37
26	Anomalous seismo-LAI variations potentially associated with the 2017 Mw = 7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Advances in Space Research, 2019, 64, 143-158.	2.6	43
27	Multi-Parametric Climatological Analysis Associated with Global Significant Volcanic Eruptions During 2002–2017. Pure and Applied Geophysics, 2019, 176, 3629-3647.	1.9	19
28	Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Scientific Reports, 2019, 9, 20287.	3.3	85
29	Multi precursors analysis associated with the powerful Ecuador (MW= 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Advances in Space Research, 2018, 61, 248-263.	2.6	64
30	New perspectives in the study of the Earth's magnetic field and climate connection: The use of transfer entropy. PLoS ONE, 2018, 13, e0207270.	2.5	22
31	Statistical analysis of the oceanic magnetic anomaly data. Physics of the Earth and Planetary Interiors, 2018, 284, 28-35.	1.9	2
32	lonospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece. Annales Geophysicae, 2018, 36, 361-371.	1.6	19
33	Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth and Planetary Science Letters, 2017, 461, 119-126.	4.4	73
34	A Multi-parametric Climatological Approach to Study the 2016 Amatrice–Norcia (Central Italy) Earthquake Preparatory Phase. Pure and Applied Geophysics, 2017, 174, 3673-3688.	1.9	41
35	Long-term variations of the upper atmosphere parameters on Rome ionosonde observations and their interpretation. Journal of Space Weather and Space Climate, 2017, 7, A21.	3.3	7
36	Geosphere coupling and hydrothermal anomalies before the 2009 <i>M</i> _w Â6.3 L'Aquila earthquake in Italy. Natural Hazards and Earth System Sciences, 2016, 16, 1859-1880.	3.6	34

#	Article	IF	CITATIONS
37	The South Atlantic Anomaly: The Key for a Possible Geomagnetic Reversal. Frontiers in Earth Science, 2016, 4, .	1.8	67
38	Observing Volcanoes from the Seafloor in the Central Mediterranean Area. Remote Sensing, 2016, 8, 298.	4.0	8
39	Insights into pre-reversal paleosecular variation from stochastic models. Frontiers in Earth Science, 2015, 3, .	1.8	3
40	Geospace perturbations induced by the Earth: The state of the art and future trends. Physics and Chemistry of the Earth, 2015, 85-86, 17-33.	2.9	56
41	Geosystemics: A Systemic View of the Earth's Magnetic Field and the Possibilities for an Imminent Geomagnetic Transition. Pure and Applied Geophysics, 2015, 172, 75-89.	1.9	6
42	Using "domino―model to study the secular variation of the geomagnetic dipolar moment. Physics of the Earth and Planetary Interiors, 2015, 242, 9-23.	1.9	6
43	Accelerating moment release revisited: Examples of application to Italian seismic sequences. Tectonophysics, 2015, 639, 82-98.	2.2	22
44	The Marsili Volcanic Seamount (Southern Tyrrhenian Sea): A Potential Offshore Geothermal Resource. Energies, 2014, 7, 4068-4086.	3.1	19
45	A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth and Planetary Science Letters, 2014, 388, 98-109.	4.4	280
46	Underwater geophysical monitoring for European Multidisciplinary Seafloor and water column Observatories. Journal of Marine Systems, 2014, 130, 12-30.	2.1	28
47	Magnetoreception: an unavoidable step for plant evolution?. Trends in Plant Science, 2014, 19, 1-4.	8.8	51
48	ls there a one-to-one correspondence between ionospheric anomalies and large earthquakes along Longmenshan faults?. Annales Geophysicae, 2014, 32, 187-196.	1.6	19
49	Geosystemics, Entropy and Criticality of Earthquakes: A Vision of Our Planet and a Key of Access. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 3-20.	0.2	4
50	A few earthquake conundrums resolved. Journal of Asian Earth Sciences, 2013, 62, 501-509.	2.3	14
51	Antarctic geomagnetic reference model updated to 2010 and provisionally to 2012. Tectonophysics, 2013, 585, 13-25.	2.2	4
52	Geomagnetic jerks as chaotic fluctuations of the Earth's magnetic field. Geochemistry, Geophysics, Geosystems, 2013, 14, 839-850.	2.5	20
53	NEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea. IEEE Journal of Oceanic Engineering, 2013, 38, 358-374.	3.8	45
54	Toward a possible next geomagnetic transition?. Natural Hazards and Earth System Sciences, 2013, 13, 3395-3403.	3.6	24

#	Article	IF	CITATIONS
55	Repeat-station surveys: implications from chaos and ergodicity of the recent geomagnetic field. Annals of Geophysics, 2013, 56, .	1.0	2
56	Geomagnetic jerks characterization via spectral analysis. Solid Earth, 2012, 3, 131-148.	2.8	10
57	Power-law frequency distribution of H/V spectral ratio of seismic signals: Evidence for a critical crust. Earth, Planets and Space, 2012, 64, 49-54.	2.5	3
58	Quasi-synchronous multi-parameter anomalies associated with the 2010–2011 New Zealand earthquake sequence. Natural Hazards and Earth System Sciences, 2012, 12, 1059-1072.	3.6	29
59	Magnetic transfer function entropy and the 2009 <i>M</i> _w = 6.3 L'Aquila earthquake (Central Italy). Nonlinear Processes in Geophysics, 2012, 19, 401-409.	1.3	7
60	Geomagnetic South Atlantic Anomaly and global sea level rise: A direct connection?. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 74, 129-135.	1.6	16
61	Ergodicity of the recent geomagnetic field. Physics of the Earth and Planetary Interiors, 2011, 186, 103-110.	1.9	10
62	The Gutenberg-Richter Law and Entropy of Earthquakes: Two Case Studies in Central Italy. Bulletin of the Seismological Society of America, 2011, 101, 1386-1395.	2.3	85
63	The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation. PLoS ONE, 2011, 6, e26672.	2.5	31
64	Surface latent heat flux anomalies before the M S 7.1 New Zealand earthquake 2010. Science Bulletin, 2011, 56, 3273.	1.7	23
65	Equivalent Monopole Source of the Geomagnetic South Atlantic Anomaly. Pure and Applied Geophysics, 2010, 167, 339-347.	1.9	8
66	The 2009 L'Aquila (Central Italy) seismic sequence as a chaotic process. Tectonophysics, 2010, 496, 44-52.	2.2	38
67	Shannon information of the geomagnetic field for the past 7000 years. Nonlinear Processes in Geophysics, 2010, 17, 77-84.	1.3	9
68	Two geomagnetic regional models for Albania and south-east Italy from 1990 to 2010 with prediction to 2012 and comparison with IGRF-11. Earth, Planets and Space, 2010, 62, 833-841.	2.5	6
69	Re-orientation in clock-shifted homing pigeons subjected to a magnetic disturbance: a study with GPS data loggers. Behavioral Ecology and Sociobiology, 2009, 64, 289-296.	1.4	17
70	Geomagnetic and ionospheric data analysis over Antarctica: a contribution to the long term trends investigation. Annales Geophysicae, 2008, 26, 1173-1179.	1.6	6
71	How persistent is the present trend of the geomagnetic field to decay and, possibly, to reverse?. Physics of the Earth and Planetary Interiors, 2007, 162, 217-226.	1.9	17
72	New model alternatives for improving the representation of the core magnetic field of Antarctica. Antarctic Science, 2006, 18, 101-109.	0.9	18

#	Article	IF	CITATIONS
73	Information content and K-entropy of the present geomagnetic field. Earth and Planetary Science Letters, 2004, 218, 269-275.	4.4	22
74	Mission results from the first GEOSTAR observatory (Adriatic Sea, 1998). Earth, Planets and Space, 2003, 55, 361-373.	2.5	20
75	Spatial and temporal spectra of the geomagnetic field and their scaling properties. Physics of the Earth and Planetary Interiors, 2003, 135, 125-134.	1.9	30
76	Active EM sounding for early warning of earthquakes and volcanic eruptions. Physics of the Earth and Planetary Interiors, 2003, 139, 187-195.	1.9	6
77	Atherosclerotic Plaque Formation and Risk Factors. International Journal of Immunopathology and Pharmacology, 2003, 16, 25-31.	2.1	25
78	NONLINEAR VARIABILITY IN THE GEOMAGNETIC SECULAR VARIATION OF THE LAST 150 YEARS. Fractals, 2002, 10, 297-303.	3.7	13
79	A model of the secular change of the geomagnetic field for Antarctica. Tectonophysics, 2002, 347, 179-187.	2.2	11
80	Geomagnetic depth sounding in the Northern Apennines (Italy). Earth, Planets and Space, 2001, 53, 385-396.	2.5	14
81	Source ambiguity from an estimation of the scaling exponent of potential field power spectra. Geophysical Journal International, 2000, 140, 311-323.	2.4	20
82	GEOSTAR: a GEophysical and Oceanographic STation for Abyssal Research. Physics of the Earth and Planetary Interiors, 1998, 108, 175-183.	1.9	30
83	Inherent powerâ€law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophysics, 1997, 62, 1143-1150.	2.6	132
84	A direct divider method for self-affine fractal profiles and surfaces. Geophysical Research Letters, 1997, 24, 2099-2102.	4.0	7
85	Some possible evidence for a chaotic geomagnetic field from observational data. Physics of the Earth and Planetary Interiors, 1997, 99, 207-220.	1.9	22
86	SHA vs. SCHA for Modelling Secular Variation in a Small Region Such as Italy. Journal of Geomagnetism and Geoelectricity, 1997, 49, 359-371.	0.9	11
87	A Fractal Interpretation of the Topography of the Geomagnetic Scalar Potential at the Core-mantle Boundary. Pure and Applied Geophysics, 1997, 149, 747-759.	1.9	7
88	Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation. Journal of Geodesy, 1997, 71, 526-532.	3.6	31
89	Simple additional constraints on regional models of the geomagnetic secular variation field. Physics of the Earth and Planetary Interiors, 1996, 97, 15-21.	1.9	3
90	On the derivation of the Earth's conductivity structure by means of spherical cap harmonic analysis. Geophysical Journal International, 1996, 127, 441-451.	2.4	16

#	Article	IF	CITATIONS
91	A simple approach to the transformation of spherical harmonic models under coordinate system rotation. Geophysical Journal International, 1996, 126, 263-270.	2.4	12
92	Regional spherical modeling of 2-D functions: The case of the critical frequency of the F2 ionospheric layer. Computers and Geosciences, 1994, 20, 849-871.	4.2	10
93	Electrical conductivity investigation of the Corso-Sardinian microplate area. Physics of the Earth and Planetary Interiors, 1993, 80, 169-189.	1.9	0
94	A Geomagnetic Reference Field for Spain at 1990 Journal of Geomagnetism and Geoelectricity, 1993, 45, 573-588.	0.9	12
95	Regional latitudinal magnetic and ionospheric effects of the March 13, 1989 storm over Italy. Canadian Journal of Physics, 1992, 70, 566-568.	1.1	0
96	Conventional spherical harmonic analysis for regional modelling of the geomagnetic field. Geophysical Research Letters, 1992, 19, 1065-1067.	4.0	39
97	New representation of geomagnetic secular variation over restricted regions by means of spherical cap harmonic analysis: application to the case of Spain. Physics of the Earth and Planetary Interiors, 1992, 74, 209-217.	1.9	25
98	Secular variation in Italy from historical geomagnetic field measurements. Physics of the Earth and Planetary Interiors, 1992, 73, 206-221.	1.9	56
99	A magnetovariational study in Sardinia. Physics of the Earth and Planetary Interiors, 1991, 66, 92-100.	1.9	4
100	Spherical cap harmonic analysis applied to regional field modelling for Italy Journal of Geomagnetism and Geoelectricity, 1990, 42, 1019-1036.	0.9	21
101	Considerations and proposal for a best utilization of IGRF over areas including a geomagnetic observatory. Physics of the Earth and Planetary Interiors, 1987, 48, 379-385.	1.9	12
102	Comparison of geomagnetic planetary reference fields over Italy. Physics of the Earth and Planetary Interiors, 1985, 37, 35-45.	1.9	3