Iwei Yeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4282797/publications.pdf

Version: 2024-02-01

87723 82410 5,650 89 38 72 h-index citations g-index papers 124 124 124 7943 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The Genetic Evolution of Melanoma from Precursor Lesions. New England Journal of Medicine, 2015, 373, 1926-1936.	13.9	824
2	Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nature Communications, 2014, 5, 3116.	5.8	521
3	Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nature Genetics, 2015, 47, 1194-1199.	9.4	221
4	UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3225-34.	3.3	208
5	Computational Analysis of Plasmodium falciparum Metabolism: Organizing Genomic Information to Facilitate Drug Discovery. Genome Research, 2004, 14, 917-924.	2.4	206
6	Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nature Communications, $2019, 10, 3163$.	5.8	205
7	Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways during Melanoma Evolution. Cancer Cell, 2018, 34, 45-55.e4.	7.7	157
8	Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro-Oncology, 2017, 19, now254.	0.6	155
9	Activating MET kinase rearrangements in melanoma and Spitz tumours. Nature Communications, 2015, 6, 7174.	5.8	139
10	Clinical, Histopathologic, and Genomic Features of Spitz Tumors With ALK Fusions. American Journal of Surgical Pathology, 2015, 39, 581-591.	2.1	129
11	<scp>NTRK3</scp> kinase fusions in Spitz tumours. Journal of Pathology, 2016, 240, 282-290.	2.1	128
12	Human tumor genomics and zebrafish modeling identify <i>SPRED1</i> loss as a driver of mucosal melanoma. Science, 2018, 362, 1055-1060.	6.0	123
13	Targeted Genomic Profiling of Acral Melanoma. Journal of the National Cancer Institute, 2019, 111, 1068-1077.	3.0	118
14	Recurrent <scp>BRAF</scp> kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell and Melanoma Research, 2013, 26, 845-851.	1.5	114
15	Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. Cancer Cell, 2018, 34, 56-68.e9.	7.7	113
16	Combined activation of MAP kinase pathway and \hat{l}^2 -catenin signaling cause deep penetrating nevi. Nature Communications, 2017, 8, 644.	5.8	107
17	Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nature Communications, 2019, 10, 353.	5.8	99
18	Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Modern Pathology, 2017, 30, 246-254.	2.9	95

#	Article	IF	CITATIONS
19	Clonal BRAF Mutations in Melanocytic Nevi and Initiating Role of BRAF in Melanocytic Neoplasia. Journal of the National Cancer Institute, 2013, 105, 917-919.	3.0	92
20	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	7.7	90
21	Knowledge acquisition, consistency checking and concurrency control for Gene Ontology (GO). Bioinformatics, 2003, 19, 241-248.	1.8	81
22	The genomic landscapes of individual melanocytes from human skin. Nature, 2020, 586, 600-605.	13.7	79
23	Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Modern Pathology, 2018, 31, 660-673.	2.9	76
24	Well-differentiated papillary mesothelioma of the peritoneum is genetically defined by mutually exclusive mutations in TRAF7 and CDC42. Modern Pathology, 2019, 32, 88-99.	2.9	76
25	Ambiguous Melanocytic Tumors With Loss of 3p21. American Journal of Surgical Pathology, 2014, 38, 1088-1095.	2.1	75
26	Clinical activity of the <scp>MEK</scp> inhibitor trametinib in metastatic melanoma containing <i><scp>BRAF</scp></i> kinase fusion. Pigment Cell and Melanoma Research, 2015, 28, 607-610.	1.5	70
27	Spitz melanoma is a distinct subset of spitzoid melanoma. Modern Pathology, 2020, 33, 1122-1134.	2.9	67
28	Co-occurring Alterations in the RAS–MAPK Pathway Limit Response to MET Inhibitor Treatment in MET Exon 14 Skipping Mutation-Positive Lung Cancer. Clinical Cancer Research, 2020, 26, 439-449.	3.2	64
29	Genomic profiling of breast secretory carcinomas reveals distinct genetics from other breast cancers and similarity to mammary analog secretory carcinomas. Modern Pathology, 2017, 30, 1086-1099.	2.9	63
30	Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Reports, 2019, 29, 573-588.e7.	2.9	62
31	The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathologica, 2019, 137, 139-150.	3.9	57
32	A recurrent kinase domain mutation in PRKCA defines chordoid glioma of the third ventricle. Nature Communications, 2018, 9, 810.	5.8	56
33	Filigree-like Rete Ridges, Lobulated Nests, Rosette-like Structures, and Exaggerated Maturation Characterize Spitz Tumors With NTRK1 Fusion. American Journal of Surgical Pathology, 2019, 43, 737-746.	2.1	55
34	Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity. Modern Pathology, 2016, 29, 1012-1027.	2.9	54
35	Diffuse Infantile Hepatic Hemangiomas: A Report of Four Cases Successfully Managed with Medical Therapy. Pediatric Dermatology, 2011, 28, 267-275.	0.5	50
36	Distinguishing neurofibroma from desmoplastic melanoma: the value of the CD34 fingerprint. Journal of Cutaneous Pathology, 2011, 38, 625-630.	0.7	47

#	Article	IF	Citations
37	Melanoma Arising in a Large Plaque-type Blue Nevus With Subcutaneous Cellular Nodules. American Journal of Surgical Pathology, 2012, 36, 1258-1263.	2.1	41
38	Prognostic factors and survival in acral lentiginous melanoma. British Journal of Dermatology, 2017, 177, 428-435.	1.4	41
39	Melanocytic tumors with MAP3K8 fusions: report of 33 cases with morphological-genetic correlations. Modern Pathology, 2020, 33, 846-857.	2.9	38
40	Differential expression of PHLDA1 (TDAG51) in basal cell carcinoma and trichoepithelioma. British Journal of Dermatology, 2012, 167, 1106-1110.	1.4	37
41	Melanoma <i>ex</i> blue nevus: two cases resembling large plaqueâ€type blue nevus with subcutaneous cellular nodules. Journal of Cutaneous Pathology, 2012, 39, 1094-1099.	0.7	37
42	Cutaneous Non-Neural Granular Cell Tumors Harbor Recurrent ALK Gene Fusions. American Journal of Surgical Pathology, 2018, 42, 1133-1142.	2.1	33
43	MicroRNA Ratios Distinguish Melanomas fromÂNevi. Journal of Investigative Dermatology, 2020, 140, 164-173.e7.	0.3	32
44	Genomic and Clinicopathologic Characteristics of PRKAR1A-inactivated Melanomas. American Journal of Surgical Pathology, 2020, 44, 805-816.	2.1	31
45	<scp>SOX</scp> â€10 expression in cutaneous myoepitheliomas and mixed tumors. Journal of Cutaneous Pathology, 2014, 41, 353-363.	0.7	30
46	Cutaneous Mycobacterial Spindle Cell Pseudotumor: A Potential Mimic of Soft Tissue Neoplasms. American Journal of Dermatopathology, 2011, 33, e66-e69.	0.3	29
47	New and evolving concepts of melanocytic nevi and melanocytomas. Modern Pathology, 2020, 33, 1-14.	2.9	28
48	Melanoma pathology: new approaches and classification*. British Journal of Dermatology, 2021, 185, 282-293.	1.4	25
49	Drug Targets for Plasmodium falciparum: A Post-Genomic Review/Survey. Mini-Reviews in Medicinal Chemistry, 2006, 6, 177-202.	1.1	24
50	Inactivating <i>MUTYH </i> germline mutations in pediatric patients with high-grade midline gliomas. Neuro-Oncology, 2016, 18, 752-753.	0.6	20
51	Fusion partners of NTRK3 affect subcellular localization of the fusion kinase and cytomorphology of melanocytes. Modern Pathology, 2021, 34, 735-747.	2.9	20
52	Evaluation and management of a patient with chronic pruritus. Journal of Allergy and Clinical Immunology, 2012, 130, 1015-1016.e7.	1.5	19
53	Molecular Melanoma Diagnosis Update. Clinics in Laboratory Medicine, 2017, 37, 473-484.	0.7	18
54	Plexiform melanocytic schwannoma: a mimic of melanoma. Journal of Cutaneous Pathology, 2012, 39, 521-525.	0.7	17

#	Article	lF	CITATIONS
55	Ultraviolet lightâ€related DNA damage mutation signature distinguishes cutaneous from mucosal or other origin for head and neck squamous cell carcinoma of unknown primary site. Head and Neck, 2019, 41, E82-E85.	0.9	17
56	GNAQ ^{Q209L} expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. Pigment Cell and Melanoma Research, 2020, 33, 96-111.	1.5	16
57	Detection of cryptogenic malignancies from metagenomic whole genome sequencing of body fluids. Genome Medicine, 2021, 13, 98.	3.6	16
58	Impact of Next-generation Sequencing on Interobserver Agreement and Diagnosis of Spitzoid Neoplasms. American Journal of Surgical Pathology, 2021, 45, 1597-1605.	2.1	16
59	Spitz melanocytic tumours – a review. Histopathology, 2022, 80, 122-134.	1.6	16
60	Ferrous iron–activatable drug conjugate achieves potent MAPK blockade in <i>KRAS</i> driven tumors. Journal of Experimental Medicine, 2022, 219, .	4.2	15
61	An infiltrative variant of nonâ€neural granular cell tumor: a case report. Journal of Cutaneous Pathology, 2009, 36, 46-51.	0.7	14
62	Eruptive Spitz nevus, a striking example of benign metastasis. Scientific Reports, 2020, 10, 16216.	1.6	13
63	Expanding the Spectrum of Microscopic and Cytogenetic Findings Associated With Spitz Tumors With 11p Gains. American Journal of Surgical Pathology, 2021, 45, 277-285.	2.1	13
64	Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Medicine, 2022, 14, .	3.6	13
65	Neurofibroma-Like Spindle Cell Melanoma. American Journal of Dermatopathology, 2012, 34, 668-670.	0.3	12
66	Topical timolol: An effective treatment option for agminated pyogenic granuloma. Pediatric Dermatology, 2018, 35, e300-e303.	0.5	9
67	Melanotic Schwannoma of the Vulva: A Case Report and Review of the Literature. American Journal of Dermatopathology, 2020, 42, 46-51.	0.3	9
68	Multiple desmoplastic Spitz nevi with BRAF fusions in a patient with ring chromosome 7 syndrome. Pigment Cell and Melanoma Research, 2021, 34, 987-993.	1.5	9
69	Evaluation of Crizotinib Treatment in a Patient With Unresectable <i>GOPC-ROS1</i> Fusion Agminated Spitz Nevi. JAMA Dermatology, 2021, 157, 836-841.	2.0	9
70	Melanoma BRAF Fusions—Letter. Clinical Cancer Research, 2014, 20, 6631-6631.	3.2	8
71	Eccrine hidradenitis sine neutrophils: a toxic response to chemotherapy. Journal of Cutaneous Pathology, 2011, 38, 905-910.	0.7	7
72	PTCH1 Mutation in a Patient With Metastatic Undifferentiated Carcinoma With Clear Cell Change. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 778-783.	2.3	6

#	Article	IF	Citations
7 3	Fingerprint CD34 Immunopositivity. Journal of Cutaneous Pathology, 2010, 37, 1127-1127.	0.7	5
74	Supraorbital Cutaneous Fetal Rhabdomyoma of Intermediate Type. American Journal of Dermatopathology, 2014, 36, e93-e96.	0.3	5
75	Recent advances in molecular genetics of melanoma progression: implications for diagnosis and treatment. F1000Research, 2016, 5, 1529.	0.8	4
76	Update on classification of melanocytic tumors and the role of immunohistochemistry and molecular techniques. Seminars in Diagnostic Pathology, 2022, 39, 248-256.	1.0	4
77	Chronic Helicobacter cinaedi cellulitis diagnosed by microbial polymerase chain reaction. JAAD Case Reports, 2017, 3, 398-400.	0.4	3
78	Acute myeloid leukemia with $t(14;21)$ involving RUNX1 and SYNE2: A novel favorable-risk translocation?. Cancer Genetics, 2017, 216-217, 74-78.	0.2	3
79	Fingerprint CD34 Immunopositivity. Journal of Cutaneous Pathology, 2010, 37, 1128-1129.	0.7	2
80	Madura Foot Caused by Actinomadura madurae in a Pregnant Woman. Archives of Dermatology, 2010, 146, 1189-90.	1.7	2
81	Eosinophilic Pustular Folliculitis in Children after Stem Cell Transplantation: An Eruption Distinct from Graftâ€Versusâ€Host Disease. Pediatric Dermatology, 2017, 34, 326-330.	0.5	2
82	Response To: Feasibility of a Tumor Progression Model in PRKAR1A-inactivated Melanomas. American Journal of Surgical Pathology, 2021, 45, 869-870.	2.1	1
83	Hypomelanotic Blue Nevi Lack Fingerprint CD34 Immunopositivity. American Journal of Dermatopathology, 2012, 34, 342-343.	0.3	0
84	TB-02UPFRONT, REAL-TIME TUMOR AND GERMLINE SEQUENCING OF PEDIATRIC BRAIN TUMOR PATIENTS: THE UCSF EXPERIENCE. Neuro-Oncology, 2016, 18, iii169.2-iii169.	0.6	0
85	Spitz Tumors. , 2019, , 395-410.		0
86	Deep Penetrating Nevi., 2019,, 80-89.		0
87	Primary Cilia Are Preserved in Cellular Blue and Atypical Blue Nevi and Lost in Blue Nevus–like Melanoma. American Journal of Surgical Pathology, 2021, 45, 1205-1212.	2.1	0
88	Spitz Tumors. , 2018, , 1-16.		0
89	A rare case of axillary keratoacanthoma arising in hidradenitis suppurativa. JAAD Case Reports, 2022, 21, 49-51.	0.4	0