
Hee Taek Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4282641/publications.pdf Version: 2024-02-01

HEE TAEK KIM

#	Article	IF	CITATIONS
1	Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnology Journal, 2022, 17, e2000451.	3.5	5
2	Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2022, 157, 112025.	16.4	32
3	Development of a bio-chemical route to C5 plasticizer synthesis using glutaric acid produced by metabolically engineered <i>Corynebacterium glutamicum</i> . Green Chemistry, 2022, 24, 1590-1602.	9.0	6
4	Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system. Enzyme and Microbial Technology, 2022, 155, 109994.	3.2	16
5	Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester. Bioresource Technology, 2022, 352, 127106.	9.6	15
6	Development of a glutaric acid production system equipped with stepwise feeding of monosodium glutamate by whole-cell bioconversion. Enzyme and Microbial Technology, 2022, 159, 110053.	3.2	3
7	One-Pot Chemo-bioprocess of PET Depolymerization and Recycling Enabled by a Biocompatible Catalyst, Betaine. ACS Catalysis, 2021, 11, 3996-4008.	11.2	58
8	Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. Korean Journal of Chemical Engineering, 2021, 38, 1291-1307.	2.7	6
9	Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains. Korean Journal of Chemical Engineering, 2021, 38, 1452-1459.	2.7	15
10	Chemoâ€Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials. ChemSusChem, 2021, 14, 4251-4259.	6.8	36
11	Improving the organic solvent resistance of lipase a from Bacillus subtilis in water–ethanol solvent through rational surface engineering. Bioresource Technology, 2021, 337, 125394.	9.6	11
12	Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review. Bioresource Technology, 2021, 340, 125693.	9.6	50
13	Fermentative High-Level Production of 5-Hydroxyvaleric Acid by Metabolically Engineered <i>Corynebacterium glutamicum</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 2523-2533.	6.7	21
14	Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, 2020, 58, 47-81.	7.0	138
15	Development of Metabolically Engineered <i>Corynebacterium glutamicum</i> for Enhanced Production of Cadaverine and Its Use for the Synthesis of Bio-Polyamide 510. ACS Sustainable Chemistry and Engineering, 2020, 8, 129-138.	6.7	23
16	Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers. Biotechnology and Bioprocess Engineering, 2020, 25, 848-861.	2.6	21
17	Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnology Journal, 2020, 15, e1900489.	3.5	92
18	Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. International Journal of Biological Macromolecules, 2020, 149, 593-599.	7.5	30

Ηεε Ταεκ Κιμ

#	Article	IF	CITATIONS
19	A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste. Green Chemistry, 2020, 22, 3461-3469.	9.0	36
20	Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, 2019, 51, 99-109.	7.0	50
21	High-Level Conversion of l-lysine into Cadaverine by Escherichia coli Whole Cell Biocatalyst Expressing Hafnia alvei l-lysine Decarboxylase. Polymers, 2019, 11, 1184.	4.5	21
22	Biological Valorization of Poly(ethylene terephthalate) Monomers for Upcycling Waste PET. ACS Sustainable Chemistry and Engineering, 2019, 7, 19396-19406.	6.7	141
23	Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. Biotechnology and Bioprocess Engineering, 2019, 24, 48-64.	2.6	34
24	Metabolic Engineering of <i>Corynebacterium glutamicum</i> for the High-Level Production of Cadaverine That Can Be Used for the Synthesis of Biopolyamide 510. ACS Sustainable Chemistry and Engineering, 2018, 6, 5296-5305.	6.7	83
25	Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Applied Microbiology and Biotechnology, 2018, 102, 3915-3937.	3.6	60
26	Construction of a Vitreoscilla Hemoglobin Promoter-Based Tunable Expression System for Corynebacterium glutamicum. Catalysts, 2018, 8, 561.	3.5	10
27	Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microbial Cell Factories, 2018, 17, 129.	4.0	42
28	Recent advances in metabolic engineering of <i>Corynebacterium glutamicum</i> as a potential platform microorganism for biorefinery. Biofuels, Bioproducts and Biorefining, 2018, 12, 899-925.	3.7	34
29	Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresource Technology, 2016, 199, 311-318.	9.6	87
30	A Novel Agarolytic β-Galactosidase Acts on Agarooligosaccharides for Complete Hydrolysis of Agarose into Monomers. Applied and Environmental Microbiology, 2014, 80, 5965-5973.	3.1	78