Konstantinos C Christoforidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4282640/publications.pdf

Version: 2024-02-01

Konstantinos C

#	Article	IF	CITATIONS
1	Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem, 2017, 9, 1523-1544.	3.7	396
2	CO 2 capture and photocatalytic reduction using bifunctional TiO 2 /MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 2017, 210, 131-140.	20.2	288
3	Synthesis and photocatalytic application of visible-light active \hat{I}^2 -Fe 2 O 3 /g-C 3 N 4 hybrid nanocomposites. Applied Catalysis B: Environmental, 2016, 187, 171-180.	20.2	194
4	Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production. Nano Energy, 2018, 50, 468-478.	16.0	133
5	Photocatalysis for Hydrogen Production and CO ₂ Reduction: The Case of Copperâ€Catalysts. ChemCatChem, 2019, 11, 368-382.	3.7	131
6	Biological studies of new organotin(IV) complexes of thioamide ligands. European Journal of Medicinal Chemistry, 2008, 43, 327-335.	5.5	124
7	Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation. Applied Catalysis B: Environmental, 2019, 242, 369-378.	20.2	111
8	Single-Step Synthesis of SnS ₂ Nanosheet-Decorated TiO ₂ Anatase Nanofibers as Efficient Photocatalysts for the Degradation of Gas-Phase Diethylsulfide. ACS Applied Materials & Interfaces, 2015, 7, 19324-19334.	8.0	105
9	Halloysite–TiO2 nanocomposites: Synthesis, characterization and photocatalytic activity. Applied Catalysis B: Environmental, 2013, 132-133, 416-422.	20.2	98
10	Influence of Pb(II) on the Radical Properties of Humic Substances and Model Compounds. Journal of Physical Chemistry A, 2005, 109, 2223-2232.	2.5	72
11	The Effect of Materials Architecture in TiO ₂ /MOF Composites on CO ₂ Photoreduction and Charge Transfer. Small, 2019, 15, e1805473.	10.0	72
12	Structure-Catalytic Function Relationship of SiO ₂ -Immobilized Mononuclear Cu Complexes:  An EPR Study. Langmuir, 2007, 23, 10407-10418.	3.5	65
13	High-Field 285 GHz Electron Paramagnetic Resonance Study of Indigenous Radicals of Humic Acids. Journal of Physical Chemistry A, 2007, 111, 11860-11866.	2.5	54
14	Photocatalytically Active Graphitic Carbon Nitride as an Effective and Safe 2D Material for In Vitro and In Vivo Photodynamic Therapy. Small, 2020, 16, e1904619.	10.0	53
15	Solar and visible light photocatalytic enhancement of halloysite nanotubes/g-C ₃ N ₄ heteroarchitectures. RSC Advances, 2016, 6, 86617-86626.	3.6	50
16	Complete dechlorination of pentachlorophenol by a heterogeneous SiO2–Fe–porphyrin catalyst. Applied Catalysis B: Environmental, 2010, 95, 297-302.	20.2	47
17	Photoactivity and charge trapping sites in copper and vanadium doped anatase TiO ₂ nano-materials. Catalysis Science and Technology, 2016, 6, 1094-1105.	4.1	46
18	Iron–sulfur codoped TiO2 anatase nano-materials: UV and sunlight activity for toluene degradation. Applied Catalysis B: Environmental, 2012, 117-118, 310-316.	20.2	44

Konstantinos C

#	Article	IF	CITATIONS
19	Halloysite and sepiolite –TiO2 nanocomposites: Synthesis characterization and photocatalytic activity in three aquatic wastes. Materials Science in Semiconductor Processing, 2018, 85, 1-8.	4.0	44
20	Mechanism of catalytic decomposition of pentachlorophenol by a highly recyclable heterogeneous SiO2–[Fe-porphyrin] catalyst. Journal of Catalysis, 2010, 270, 153-162.	6.2	40
21	Three-phase nanocomposites of two nanoclays and TiO2: Synthesis, characterization and photacatalytic activities. Applied Catalysis B: Environmental, 2014, 147, 526-533.	20.2	40
22	Understanding the role of mediators in the efficiency of advanced oxidation processes using white-rot fungi. Chemical Engineering Journal, 2019, 359, 1427-1435.	12.7	37
23	Epoxidation of olefins with H2O2 catalyzed by new symmetrical acetylacetone-based Schiff bases/Mn(II) homogeneous systems: A catalytic and EPR study. Journal of Molecular Catalysis A, 2009, 297, 44-53.	4.8	36
24	Hydrocarbon oxidation by homogeneous and heterogeneous non-heme iron (III) catalysts with H2O2. Catalysis Today, 2010, 157, 101-106.	4.4	36
25	Structure and activity of iron-doped TiO ₂ -anatase nanomaterials for gas-phase toluene photo-oxidation. Catalysis Science and Technology, 2013, 3, 626-634.	4.1	35
26	Photocatalytic Hydrogen Production by Boron Modified TiO ₂ /Carbon Nitride Heterojunctions. ChemCatChem, 2019, 11, 6408-6416.	3.7	35
27	Promoting H2 photoproduction of TiO2-based materials by surface decoration with Pt nanoparticles and SnS2 nanoplatelets. Applied Catalysis B: Environmental, 2020, 277, 119246.	20.2	35
28	The catalytic function of SiO2-immobilized Mn(II)-complexes for alkene epoxidation with H2O2. Journal of Molecular Catalysis A, 2010, 319, 58-65.	4.8	34
29	Mechanism of catalytic degradation of 2,4,6-trichlorophenol by a Fe-porphyrin catalyst. Applied Catalysis B: Environmental, 2011, 101, 417-424.	20.2	33
30	Tuning Thermally Treated Graphitic Carbon Nitride for H ₂ Evolution and CO ₂ Photoreduction: The Effects of Material Properties and Mid-Gap States. ACS Applied Energy Materials, 2018, 1, 6524-6534.	5.1	33
31	Gallic acid mediated oxidation of pentachlorophenol by the Fenton reaction under mild oxidative conditions. Journal of Chemical Technology and Biotechnology, 2018, 93, 1601-1610.	3.2	27
32	EPR study of a novel [Fe–porphyrin] catalyst. Molecular Physics, 2007, 105, 2185-2194.	1.7	26
33	Effect of Metal Ions on the Indigenous Radicals of Humic Acids: High Field Electron Paramagnetic Resonance Study. Environmental Science & Technology, 2010, 44, 7011-7016.	10.0	26
34	Effects of Dissolved Carboxylates and Carbonates on the Adsorption Properties of Thiuram Disulfate Pesticides. Environmental Science & Technology, 2006, 40, 221-227.	10.0	21
35	Palygorskite–TiO2 nanocomposites: Part 2. photocatalytic activities in decomposing air and organic pollutants. Applied Clay Science, 2013, 83-84, 198-202.	5.2	20
36	Axial ligand effect on the catalytic activity of biomimetic Fe-porphyrin catalyst: An experimental and DFT study. Journal of Catalysis, 2016, 344, 768-777.	6.2	20

KONSTANTINOS C

#	Article	IF	CITATIONS
37	Semiquinone in Molecularly Imprinted Hybrid Amino Acidâ^'SiO ₂ Biomimetic Materials. An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2008, 112, 12841-12852.	3.1	17
38	Innovative insights in a plug flow microreactor for <i>operando</i> X-ray studies. Journal of Applied Crystallography, 2013, 46, 1523-1527.	4.5	15
39	Layer-by-Layer Photocatalytic Assembly for Solar Light-Activated Self-Decontaminating Textiles. ACS Applied Materials & Interfaces, 2016, 8, 34438-34445.	8.0	15
40	A structural and surface approach to size and shape control of sulfur-modified undoped and Fe-doped TiO2 anatase nano-materials. Physical Chemistry Chemical Physics, 2012, 14, 5628.	2.8	14
41	Role of TiO2 morphological characteristics in EVOH–TiO2 nanocomposite films: self-degradation and self-cleaning properties. RSC Advances, 2013, 3, 8541.	3.6	10
42	Effect of humic acid on chemical oxidation of organic pollutants by iron(II) and H2O2: A dual mechanism. Journal of Environmental Chemical Engineering, 2015, 3, 2991-2996.	6.7	10
43	Substrate and co-catalyst effects on the local coordination environment of a Fe–porphyrin catalyst. Chemical Physics Letters, 2010, 494, 289-294.	2.6	8
44	Direct observation of spin-injection in tyrosinate-functionalized single-wall carbon nanotubes. Carbon, 2014, 67, 424-433.	10.3	7
45	g-C ₃ N ₄ /Ag ₃ PO ₄ based binary and ternary heterojunction for improved photocatalytic removal of organic pollutants. International Journal of Environmental Analytical Chemistry, 2023, 103, 3011-3026.	3.3	6
46	MOFâ€Based Heterojunctions: The Effect of Materials Architecture in TiO ₂ /MOF Composites on CO ₂ Photoreduction and Charge Transfer (Small 11/2019). Small, 2019, 15, 1970060.	10.0	3
47	A general mechanism of interaction of carbonates with non-polar S-containing pesticides. Geoderma, 2011, 169, 13-19.	5.1	2
48	Photodynamic Therapy: Photocatalytically Active Graphitic Carbon Nitride as an Effective and Safe 2D Material for In Vitro and In Vivo Photodynamic Therapy (Small 10/2020). Small, 2020, 16, 2070051.	10.0	2
49	A comparative study on modified graphitic carbon nitride: Synthesis, characterization, and applications. , 2021, , 629-670.		2
50	TiO2 polymorphs for hydrogen photoproduction. , 2020, , 127-140.		1
51	Two-Dimensional Photocatalysts for Energy and Environmental Applications. Solar, 2022, 2, 305-320.	1.8	1
52	2D materials for solar fuels production. , 2020, , 271-288.		0
53	Artificial photosynthesis by carbon nitride-based composite photocatalysts. , 2022, , 215-243.		0 _