Eric Boucher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4282163/publications.pdf

Version: 2024-02-01

840776 888059 20 291 11 17 h-index citations g-index papers 20 20 20 473 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Tension modulation of actomyosin ring assembly and RhoGTPases activity: Perspectives from the Xenopus oocyte wound healing model. Cytoskeleton, 2021, 78, 349-360.	2.0	O
2	Correcting an instance of synthetic lethality with a pro-survival sequence. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118734.	4.1	O
3	Dynamics of actin polymerisation during the mammalian single-cell wound healing response. BMC Research Notes, 2019, 12, 420.	1.4	9
4	Actin dynamics and myosin contractility during plasma membrane repair and restoration: Does one ring really heal them all?. Current Topics in Membranes, 2019, 84, 17-41.	0.9	6
5	Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 773-792.	4.1	32
6	Stress is an agonist for the induction of programmed cell death: A review. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 699-712.	4.1	18
7	Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anatomical Record, 2018, 301, 2051-2066.	1.4	17
8	Heterologous expression of anti-apoptotic human $14-3-3\hat{l}^2/\hat{l}\pm$ enhances iron-mediated programmed cell death in yeast. PLoS ONE, 2017, 12, e0184151.	2.5	9
9	How Plasma Membrane and Cytoskeletal Dynamics Influence Single-Cell Wound Healing: Mechanotransduction, Tension and Tensegrity. , 2016, , .		1
10	Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae. Experimental Cell Research, 2016, 342, 52-61.	2.6	17
11	Plasma membrane and cytoskeleton dynamics during single-cell wound healing. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2649-2661.	4.1	39
12	C21-steroids inactivation and glucocorticoid synthesis in the developing lung. Journal of Steroid Biochemistry and Molecular Biology, 2015, 147, 70-80.	2.5	4
13	Human Thyroid Cancer-1 (TC-1) is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast. Microbial Cell, 2015, 2, 247-255.	3.2	4
14	Ontogeny of adrenal-like glucocorticoid synthesis pathway and of $20\hat{l}_{\pm}$ -hydroxysteroid dehydrogenase in the mouse lung. BMC Research Notes, 2014, 7, 119.	1.4	14
15	Glucocorticoid metabolism in the developing lung: Adrenal-like synthesis pathway. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 72-80.	2.5	27
16	Sex-specific perinatal expression of glutathione peroxidases during mouse lung development. Molecular and Cellular Endocrinology, 2012, 355, 87-95.	3.2	19
17	Levels of Dihydrotestosterone, Testosterone, Androstenedione, and Estradiol in Canalicular, Saccular, and Alveolar Mouse Lungs. Lung, 2010, 188, 229-233.	3.3	16
18	Apolipoprotein A-I, A-II, C-II, and H expression in the developing lung and sex difference in surfactant lipids. Journal of Endocrinology, 2009, 200, 321-330.	2.6	29

ERIC BOUCHER

#	Article	IF	CITATION
19	Androgen receptor and $17\hat{l}^2$ -HSD type 2 regulation in neonatal mouse lung development. Molecular and Cellular Endocrinology, 2009, 311, 109-119.	3.2	19
20	Minimization of PCR efficiency differences between standards and samples through dilution of PCR amplicons in reverse transcription buffer. Analytical Biochemistry, 2007, 362, 142-144.	2.4	11