Ming Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4281957/publications.pdf

Version: 2024-02-01

201674 223800 2,569 91 27 46 citations h-index g-index papers 93 93 93 2038 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The combined toxicity of binary mixtures of antibiotics against the cyanobacterium Microcystis is dose-dependent: insight from a theoretical nonlinear combined toxicity assessment method. Environmental Science and Pollution Research, 2022, 29, 11612-11624.	5.3	4
2	Disentangling the drivers of phytoplankton community composition in a heavily sediment-laden transcontinental river. Journal of Environmental Management, 2022, 302, 113939.	7.8	8
3	Spatial variation in bacterial community and dissolved organic matter composition in groundwater near a eutrophic lake. Aquatic Ecology, 2022, 56, 555-571.	1.5	4
4	Relationship among water quality and hydrochemical indices reveals nutrient dynamics and sources in the most sediment-laden river across the continent. Journal of Environmental Chemical Engineering, 2022, 10, 107110.	6.7	6
5	Relationship between non-point source pollution and fluorescence fingerprint of riverine dissolved organic matter is season dependent. Science of the Total Environment, 2022, 823, 153617.	8.0	28
6	Emerging investigator series: effects of sediment particle size on the spatial distributions of contaminants and bacterial communities in the reservoir sediments. Environmental Science: Water Research and Technology, 2022, 8, 957-967.	2.4	2
7	Will a heavy sediment load affect responses of phytoplankton functional groups to aquatic environmental changes in different water body types?. Science of the Total Environment, 2022, 837, 155863.	8.0	6
8	DOM stratification and characteristics versus thermal stratification – A case study in the Panjiakou Reservoir, China. Journal of Hydrology: Regional Studies, 2022, 42, 101160.	2.4	5
9	Effects of iron and humic acid on competition between Microcystis aeruginosa and Scenedesmus obliquus revealed by HPLC analysis of pigments. Journal of Oceanology and Limnology, 2021, 39, 525-535.	1.3	3
10	Roles of bacterial biomass, physiology and community in sediment phosphorus solubilizing at varying hydrostatic pressures. Journal of Cleaner Production, 2021, 282, 124531.	9.3	9
11	Flocculation of Microcystis unicells induced by pH regulation: Mechanism and potential application. Chemosphere, 2021, 263, 127708.	8.2	8
12	Fluorescence characteristics of dissolved organic matter in several independent water bodies: possible sources and land-use effects. Environmental Science and Pollution Research, 2021, 28, 33241-33253.	5.3	16
13	Spatial and environmental factors contributing to phytoplankton biogeography and biodiversity in mountain ponds across a large geographic area. Aquatic Ecology, 2021, 55, 721-735.	1.5	8
14	Predicting the effects of reservoir impoundment on phytoplankton and shoreline vegetation communities using the space-time substitution method. Water Quality Research Journal of Canada, 2021, 56, 100-110.	2.7	3
15	Life-cycle cost analysis of a hybrid algae-based biological desalination – low pressure reverse osmosis system. Water Research, 2021, 195, 116957.	11.3	30
16	Algae-Based Approach for Desalination: An Emerging Energy-Passive and Environmentally Friendly Desalination Technology. ACS Sustainable Chemistry and Engineering, 2021, 9, 8663-8678.	6.7	23
17	Two-year moving aeration controls cyanobacterial blooms in an extremely eutrophic shallow pond: Variation in phytoplankton community and Microcystis colony size. Journal of Water Process Engineering, 2021, 42, 102192.	5.6	9
18	Micrometer scale polystyrene plastics of varying concentrations and particle sizes inhibit growth and upregulate microcystin-related gene expression in Microcystis aeruginosa. Journal of Hazardous Materials, 2021, 420, 126591.	12.4	43

#	Article	IF	CITATIONS
19	Humic acid inhibits colony formation of the cyanobacterium Microcystis at high level of iron. Chemosphere, 2021, 281, 130742.	8.2	4
20	Multi-proxy approaches to investigate cyanobacteria invasion from a eutrophic lake into the circumjacent groundwater. Water Research, 2021, 204, 117578.	11.3	10
21	Geo-climatic factors weaken the effectiveness of phytoplankton diversity as a water quality indicator in a large sediment-laden river. Science of the Total Environment, 2021, 792, 148346.	8.0	19
22	Variation in the content and fluorescent composition of dissolved organic matter in soil water during rainfall-induced wetting and extract of dried soil. Science of the Total Environment, 2021, 791, 148296.	8.0	21
23	Assessing the potential to use CDOM as an indicator of water quality for the sediment-laden Yellow river, China. Environmental Pollution, 2021, 289, 117970.	7.5	14
24	Quantitative and Qualitative Responses of Soil Water-Extractable Organic Matter to Carbon and Nitrogen Management Practices in Loess Soil. Agronomy, 2021, 11, 2025.	3.0	0
25	Evaluating combined toxicity of binary heavy metals to the cyanobacterium Microcystis: A theoretical non-linear combined toxicity assessment method. Ecotoxicology and Environmental Safety, 2020, 187, 109809.	6.0	17
26	Characterization of phytoplankton community in a river ecosystem using pigment composition: a feasibility study. Environmental Science and Pollution Research, 2020, 27, 42210-42220.	5.3	7
27	The role of adsorption in microalgae biological desalination: Salt removal from brackish water using Scenedesmus obliquus. Desalination, 2020, 493, 114616.	8.2	38
28	Exploration and application of hydrochemical characteristics method for quantification of pollution sources in the Danjiangkou Reservoir area. Journal of Hydrology, 2020, 590, 125291.	5.4	10
29	Editorial special issue on cyanobacterial blooms and water ecological restoration. Environmental Science and Pollution Research, 2020, 27, 42195-42197.	5.3	0
30	Seasonal succession of phytoplankton in two temperate artificial lakes with different water sources. Environmental Science and Pollution Research, 2020, 27, 42324-42334.	5.3	13
31	Recommended turbulent energy dissipation rate for biomass and lipid production of Scenedesmus obliquus in an aerated photosynthetic culture system. Environmental Science and Pollution Research, 2020, 27, 26473-26483.	5.3	8
32	Connecting soil dissolved organic matter to soil bacterial community structure in a long-term grass-mulching apple orchard. Industrial Crops and Products, 2020, 149, 112344.	5.2	31
33	Effects of Nitrogen Forms and Supply Mode on Lipid Production of Microalga Scenedesmus obliquus. Energies, 2020, 13, 697.	3.1	38
34	Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. Bioresource Technology, 2020, 302, 122903.	9.6	61
35	Revealing hydrodynamic effects on flocculation performance and surface properties of sludge by comparing aeration and stirring systems via computational fluid dynamics aided calculation. Water Research, 2020, 172, 115500.	11.3	21
36	Insight into the vertical characteristics of dissolved organic matter in 5-m soil profiles under different land-use types on the Loess Plateau. Science of the Total Environment, 2019, 692, 613-621.	8.0	60

#	Article	IF	CITATIONS
37	Alternate succession of aggregate-forming cyanobacterial genera correlated with their attached bacteria by co-pathways. Science of the Total Environment, 2019, 688, 867-879.	8.0	32
38	Effects of land use on characteristics of water-extracted organic matter in soils of arid and semi-arid regions. Environmental Science and Pollution Research, 2019, 26, 26052-26059.	5. 3	9
39	Influence of turbulent mixing on the composition of extracellular polymeric substances (EPS) and aggregate size of aerated activated sludge. Chemical Engineering Journal, 2019, 378, 122123.	12.7	29
40	Effects of intercropping mulch on the content and composition of soil dissolved organic matter in apple orchard on the loess plateau. Journal of Environmental Management, 2019, 250, 109531.	7.8	43
41	Comparison of monoculture and mixed culture (Scenedesmus obliquus and wild algae) for C, N, and P removal and lipid production. Environmental Science and Pollution Research, 2019, 26, 20961-20968.	5. 3	25
42	Variation in spectral characteristics of dissolved organic matter in inland rivers in various trophic states, and their relationship with phytoplankton. Ecological Indicators, 2019, 104, 321-332.	6.3	37
43	Effects of dissolved organic matter from different sources on Microcystis aeruginosa growth and physiological characteristics. Ecotoxicology and Environmental Safety, 2019, 176, 125-131.	6.0	23
44	Insights into the relationship between colony formation and extracellular polymeric substances (EPS) composition of the cyanobacterium Microcystis spp. Harmful Algae, 2019, 83, 34-41.	4.8	42
45	Afforestation of loess soils: Old and new organic carbon in aggregates and density fractions. Catena, 2019, 177, 49-56.	5.0	22
46	Colony formation in the cyanobacterium <i>Microcystis</i> . Biological Reviews, 2018, 93, 1399-1420.	10.4	257
47	Effects of nitrogen forms and supply modes on colony formation in Microcystis aeruginosa. Journal of Applied Phycology, 2018, 30, 831-837.	2.8	9
48	Variations in cyanobacterial and algal communities and soil characteristics under biocrust development under similar environmental conditions. Plant and Soil, 2018, 429, 241-251.	3.7	25
49	Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis under high turbulent mixing. Water Research, 2018, 141, 340-348.	11.3	45
50	Overvalued allelopathy and overlooked effects of humic acid-like substances on Microcystis aeruginosa and Scenedesmus obliquus competition. Harmful Algae, 2018, 78, 18-26.	4.8	12
51	Sequence of Microcystis colony formation during recruitment under natural conditions. Hydrobiologia, 2018, 823, 39-48.	2.0	8
52	Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios. Bioresource Technology, 2017, 240, 157-164.	9.6	87
53	Linear alkylbenzene sulfonate (LAS) promotes sedimentation and lipid accumulation in Scenedesmus obliquus. RSC Advances, 2017, 7, 9244-9250.	3 . 6	6
54	Composition of Extracellular and Intracellular Polymeric Substances Produced by Scenedesmus and Microcystis. Environmental Engineering Science, 2017, 34, 887-894.	1.6	15

#	Article	IF	CITATIONS
55	Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate. Environmental Science and Pollution Research, 2017, 24, 11425-11434.	5.3	5
56	Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance. Journal of Hazardous Materials, 2017, 334, 86-92.	12.4	117
57	Sources, composition, and spectroscopiccharacteristics of dissolved organic matter extractedfrom sediments in an anthropogenic-impacted riverin Southeastern China. Environmental Science and Pollution Research, 2017, 24, 25431-25440.	5.3	18
58	Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms. Scientific Reports, 2017, 7, 40393.	3.3	22
59	Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China. Chemosphere, 2017, 186, 986-993.	8.2	61
60	Heavy-metal pollution alters dissolved organic matter released by bloom-forming Microcystis aeruginosa. RSC Advances, 2017, 7, 18421-18427.	3.6	11
61	Review: a meta-analysis comparing cell-division and cell-adhesion in Microcystis colony formation. Harmful Algae, 2017, 67, 85-91.	4.8	55
62	Numerical simulation of the vertical migration of Microcystis (cyanobacteria) colonies based on turbulence drag. Journal of Limnology, $2016, \ldots$	1.1	3
63	Polysaccharide biosynthesis-related genes explain phenotype-genotype correlation of Microcystis colonies in Meiliang Bay of Lake Taihu, China. Scientific Reports, 2016, 6, 35551.	3.3	9
64	Environmental factors related to the dominance of Microcystis wesenbergii and Microcystis aeruginosa in a eutrophic lake. Environmental Earth Sciences, $2016, 75, 1$.	2.7	5
65	To increase size or decrease density? Different Microcystis species has different choice to form blooms. Scientific Reports, 2016, 6, 37056.	3.3	29
66	Simultaneous biological desalination and lipid production by Scenedesmus obliquus cultured with brackish water. Desalination, 2016 , 400 , $1-6$.	8.2	43
67	Interspecific variation in extracellular polysaccharide content and colony formation of Microcystis spp. cultured under different light intensities and temperatures. Journal of Applied Phycology, 2016, 28, 1533-1541.	2.8	28
68	Effects of linear alkylbenzene sulfonate (LAS) on the interspecific competition between Microcystis and Scenedesmus. Environmental Science and Pollution Research, 2016, 23, 16194-16200.	5.3	13
69	High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments. Water Research, 2016, 101, 167-175.	11.3	75
70	Plastic film mulching on soil water and maize (<i>Zea mays</i> L.) yield in a ridge cultivation system on Loess Plateau of China. Soil Science and Plant Nutrition, 2016, 62, 1-12.	1.9	43
71	Using interval maxima regression (IMR) to determine environmental optima controlling Microcystis spp. growth in Lake Taihu. Environmental Science and Pollution Research, 2016, 23, 774-784.	5.3	8
72	Specific growth rate, colonial morphology and extracellular polysaccharides (EPS) content of <i>Scenedesmus obliquus < i> grown under different levels of light limitation. Annales De Limnologie, 2015, 51, 329-334.</i>	0.6	19

#	Article	IF	CITATIONS
73	Differences in vertical distribution of Microcystis morphospecies composition in a shallow hypertrophic lake (Lake Taihu, China). Environmental Earth Sciences, 2015, 73, 5721-5730.	2.7	20
74	Cellular N:P ratio of Microcystis as an indicator of nutrient limitationâ€"implications and applications. Environmental Earth Sciences, 2015, 74, 4023-4030.	2.7	10
75	Different tolerances to chemical contaminants between unicellular and colonial morph of Microcystis aeruginosa: Excluding the differences among different strains. Journal of Hazardous Materials, 2015, 285, 245-249.	12.4	30
76	Emission characteristics of PCDD/Fs, PAHs and PCBs during the combustion of sludge-coal water slurry. Journal of the Energy Institute, 2015, 88, 105-111.	5.3	41
77	Using a laser particle analyzer to demonstrate relationships between wind strength and <i>Microcystis < /i>colony size distribution in Lake Taihu, China. Journal of Freshwater Ecology, 2015, 30, 425-433.</i>	1.2	10
78	Biochemical composition of Microcystis aeruginosa related to specific growth rate: insight into the effects of abiotic factors. Inland Waters, 2014, 4, 357-362.	2.2	28
79	Solubilisation of mucilage induces changes in <i>Microcystis</i> colonial morphology. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 38-47.	2.0	29
80	Vertical distribution of Microcystis colony size in Lake Taihu: Its role in algal blooms. Journal of Great Lakes Research, 2014, 40, 949-955.	1.9	65
81	Lycium ruthenicum polysaccharide attenuates inflammation through inhibiting TLR4/NF-κB signaling pathway. International Journal of Biological Macromolecules, 2014, 67, 330-335.	7.5	91
82	Structure and immunobiological activity of a new polysaccharide from Bletilla striata. Carbohydrate Polymers, 2014, 107, 119-123.	10.2	93
83	Analysis of Cell Concentration, Volume Concentration, and Colony Size of Microcystis Via Laser Particle Analyzer. Environmental Management, 2014, 53, 947-958.	2.7	38
84	Relationship between extracellular polysaccharide (EPS) content and colony size of Microcystis is colonial morphology dependent. Biochemical Systematics and Ecology, 2014, 55, 346-350.	1.3	44
85	Morphospecies and genospecies of Microcystis during blooms in eutrophic Lake Taihu (China) in autumn. Biochemical Systematics and Ecology, 2014, 57, 322-327.	1.3	5
86	Size-dependent growth of Microcystis colonies in a shallow, hypertrophic lake: use of the RNA-to-total organic carbon ratio. Aquatic Ecology, 2014, 48, 207-217.	1.5	16
87	Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. Journal of Applied Phycology, 2013, 25, 1023-1030.	2.8	121
88	Effects of Ca and Mg levels on colony formation and EPS content of cultured M. aeruginosa. Procedia Environmental Sciences, 2011, 10, 1452-1458.	1.4	32
89	Morphological changes of Microcystis aeruginosa colonies in culture. Journal of Limnology, 0, , .	1.1	5
90	Influences of aeration induced turbulence on growth and competition of Microcystis and Scenedesmus in the presence of sediments with varying particle sizes. Journal of Oceanology and Limnology, $0, 1$.	1.3	O

ARTICLE

91 Effect of nutrient regimes on desalination rate and lipid production of Scenedesmus obliquus in saline water., 0, 93, 93-99.