Andrew M Glazer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4281418/publications.pdf Version: 2024-02-01

0

#	Article	IF	CITATIONS
1	Common Ancestry-Specific Ion Channel Variants Predispose to Drug-Induced Arrhythmias. Circulation, 2022, 145, 299-308.	1.6	12
2	Veratridine Can Bind to a Site at the Mouth of the Channel Pore at Human Cardiac Sodium Channel NaV1.5. International Journal of Molecular Sciences, 2022, 23, 2225.	1.8	2
3	Arrhythmia Variant Associations and Reclassifications in the eMERGE-III Sequencing Study. Circulation, 2022, 145, 877-891.	1.6	18
4	Dominant negative effects of SCN5A missense variants. Genetics in Medicine, 2022, 24, 1238-1248.	1.1	9
5	Mortality Among Patients With Early-Onset Atrial Fibrillation and Rare Variants in Cardiomyopathy and Arrhythmia Genes. JAMA Cardiology, 2022, 7, 733.	3.0	14
6	Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare <i>KCNH2</i> Variants. Circulation Genomic and Precision Medicine, 2021, 14, e003289.	1.6	10
7	Incessant atrial and ventricular tachycardias associated with an SCN5A mutation. HeartRhythm Case Reports, 2021, 7, 806-811.	0.2	0
8	Early-Onset Atrial Fibrillation and the Prevalence of Rare Variants in Cardiomyopathy and Arrhythmia Genes. JAMA Cardiology, 2021, 6, 1371.	3.0	66
9	<i>KCNQ1</i> and Long QT Syndrome in 1/45 Amish. Circulation Genomic and Precision Medicine, 2020, 13, e003133.	1.6	7
10	High-Throughput Reclassification of SCN5A Variants. American Journal of Human Genetics, 2020, 107, 111-123.	2.6	88
11	A Bayesian method to estimate variant-induced disease penetrance. PLoS Genetics, 2020, 16, e1008862.	1.5	11
12	High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel KV11.1. Heart Rhythm, 2020, 17, 2180-2189.	0.3	42
13	Deep Mutational Scan of an <i>SCN5A</i> Voltage Sensor. Circulation Genomic and Precision Medicine, 2020, 13, e002786.	1.6	33
14	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
15	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
16	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
17	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0

A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.

2

ANDREW M GLAZER

#	Article	IF	CITATIONS
19	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		Ο
20	Androgenic Effects on Ventricular Repolarization. Circulation, 2019, 140, 1070-1080.	1.6	67
21	Harmonizing Clinical Sequencing and Interpretation for the eMERGE III Network. American Journal of Human Genetics, 2019, 105, 588-605.	2.6	99
22	Association of Thyroid Function Genetic Predictors With Atrial Fibrillation. JAMA Cardiology, 2019, 4, 136.	3.0	23
23	Patient-independent human induced pluripotent stem cell model: A new tool for rapid determination of genetic variant pathogenicity in long QT syndrome. Heart Rhythm, 2019, 16, 1686-1695.	0.3	32
24	A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure, 2018, 26, 683-694.e3.	1.6	43
25	Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science, 2018, 359, 1233-1239.	6.0	164
26	<i>SCN5A</i> (Na _V 1.5) Variant Functional Perturbation and Clinical Presentation. Circulation Genomic and Precision Medicine, 2018, 11, e002095.	1.6	36
27	Hypogonadism as a Reversible Cause of Torsades de Pointes in Men. Circulation, 2018, 138, 110-113.	1.6	57
28	Arrhythmia genetics: Not dark and lite, but 50 shades of gray. Heart Rhythm, 2018, 15, 1231-1232.	0.3	2
29	Increased long QT and torsade de pointes reporting on tamoxifen compared with aromatase inhibitors. Heart, 2018, 104, 1859-1863.	1.2	37
30	Phenome-wide scanning identifies multiple diseases and disease severity phenotypes associated with HLA variants. Science Translational Medicine, 2017, 9, .	5.8	105
31	Comparison of HLA allelic imputation programs. PLoS ONE, 2017, 12, e0172444.	1.1	58
32	Genome-wide association and pathway analysis of left ventricular function after anthracycline exposure in adults. Pharmacogenetics and Genomics, 2017, 27, 247-254.	0.7	54
33	Partially repeatable genetic basis of benthic adaptation in threespine sticklebacks. Evolution; International Journal of Organic Evolution, 2016, 70, 887-902.	1.1	33
34	Clinical and Biological Insights Into Combined Post- and Pre-Capillary Pulmonary Hypertension. Journal of the American College of Cardiology, 2016, 68, 2525-2536.	1.2	160
35	Distinct developmental and genetic mechanisms underlie convergently evolved tooth gain in sticklebacks. Development (Cambridge), 2015, 142, 2442-51.	1.2	53
36	Genome Assembly Improvement and Mapping Convergently Evolved Skeletal Traits in Sticklebacks with Genotyping-by-Sequencing. G3: Genes, Genomes, Genetics, 2015, 5, 1463-1472.	0.8	112

#	Article	IF	CITATIONS
37	Two developmentally temporal quantitative trait loci underlie convergent evolution of increased branchial bone length in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140822.	1.2	17
38	Modular Skeletal Evolution in Sticklebacks Is Controlled by Additive and Clustered Quantitative Trait Loci. Genetics, 2014, 197, 405-420.	1.2	122
39	Parallel developmental genetic features underlie stickleback gill raker evolution. EvoDevo, 2014, 5, 19.	1.3	36
40	Exploring the Genetic Basis of Variation in Gene Predictions with a Synthetic Association Study. PLoS ONE, 2010, 5, e11645.	1.1	0
41	The Zn Finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis. Developmental Biology, 2010, 337, 148-156.	0.9	87