Paulo Igor Milen Firmino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4281246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of sludge discharge methodologies in aerobic granular sludge reactors. Bioresource Technology Reports, 2022, 18, 101018.	1.5	2
2	Parabens in aerobic granular sludge systems: Impacts on granulation and insights into removal mechanisms. Science of the Total Environment, 2021, 753, 142105.	3.9	11
3	Can microaeration boost the biotransformation of parabens in high-rate anaerobic systems?. Chemical Engineering Research and Design, 2021, 145, 255-261.	2.7	11
4	Effects of the antibiotics trimethoprim (TMP) and sulfamethoxazole (SMX) on granulation, microbiology, and performance of aerobic granular sludge systems. Chemosphere, 2021, 262, 127840.	4.2	31
5	Redox mediator, microaeration, and nitrate addition as engineering approaches to enhance the biotransformation of antibiotics in anaerobic reactors. Journal of Hazardous Materials, 2021, 403, 123932.	6.5	14
6	Evaluation of the production of alginate-like exopolysaccharides (ALE) and tryptophan in aerobic granular sludge systems. Bioprocess and Biosystems Engineering, 2021, 44, 259-270.	1.7	19
7	Effect of calcium addition to aerobic granular sludge systems under high (conventional SBR) and low (simultaneous fill/draw SBR) selection pressure. Environmental Research, 2021, 194, 110639.	3.7	11
8	Microaeration improves the removal/biotransformation of organic micropollutants in anaerobic wastewater treatment systems. Environmental Research, 2021, 198, 111313.	3.7	6
9	Impact of cycle type on aerobic granular sludge formation, stability, removal mechanisms and system performance. Journal of Environmental Management, 2020, 256, 109970.	3.8	18
10	Effect of calcium addition on the formation and maintenance of aerobic granular sludge (AGS) in simultaneous fill/draw mode sequencing batch reactors (SBRs). Journal of Environmental Management, 2020, 255, 109850.	3.8	17
11	Elucidating the influence of environmental factors on biogas-based polyhydroxybutyrate production by Methylocystis hirsuta CSC1. Science of the Total Environment, 2020, 706, 135136.	3.9	16
12	Autotrophic denitrification via nitrate as an effective approach for removal of dissolved sulfide in anaerobic reactors. Water Science and Technology, 2020, 82, 1628-1634.	1.2	1
13	Pilot-scale aerobic granular sludge in the treatment of municipal wastewater: Optimizations in the start-up, methodology of sludge discharge, and evaluation of resource recovery. Bioresource Technology, 2020, 311, 123467.	4.8	28
14	Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor. Waste Management, 2020, 113, 395-403.	3.7	36
15	Tecnologia de lodo granular aeróbio no tratamento de esgoto doméstico: oportunidades e desafios. Engenharia Sanitaria E Ambiental, 2020, 25, 439-449.	0.1	4
16	Effects of coal ash supplementation on aerobic granular sludge cultivated in a simultaneous fill/draw sequencing batch reactor. Engenharia Sanitaria E Ambiental, 2020, 25, 691-700.	0.1	0
17	Evaluation of different air dosing strategies to enhance H ₂ S removal in microaerobic systems treating low-strength wastewaters. Environmental Technology (United Kingdom), 2019, 40, 3724-3734.	1.2	2
18	Influence of sequencing batch reactor configuration on aerobic granules growth: Engineering and microbiological aspects. Journal of Cleaner Production, 2019, 238, 117906.	4.6	18

#	Article	IF	CITATIONS
19	Comparison of the dynamics, biokinetics and microbial diversity between activated sludge flocs and aerobic granular sludge. Bioresource Technology, 2019, 294, 122106.	4.8	18
20	Effects of carbon source on the formation, stability, bioactivity and biodiversity of the aerobic granule sludge. Bioresource Technology, 2019, 278, 195-204.	4.8	85
21	Enhanced removal of emerging micropollutants by applying microaeration to an anaerobic reactor. Engenharia Sanitaria E Ambiental, 2019, 24, 667-673.	0.1	14
22	Applicability of Microaerobic Technology to Enhance BTEX Removal from Contaminated Waters. Applied Biochemistry and Biotechnology, 2018, 184, 1187-1199.	1.4	14
23	Aerobic granular sludge: Cultivation parameters and removal mechanisms. Bioresource Technology, 2018, 270, 678-688.	4.8	171
24	Process bioengineering applied to BTEX degradation in microaerobic treatment systems. Journal of Environmental Management, 2018, 223, 426-432.	3.8	21
25	Technical, Economical, and Microbiological Aspects of the Microaerobic Process on H2S Removal for Low Sulfate Concentration Wastewaters. Applied Biochemistry and Biotechnology, 2016, 180, 1386-1400.	1.4	6
26	Understanding the anaerobic BTEX removal in continuous-flow bioreactors for ex situ bioremediation purposes. Chemical Engineering Journal, 2015, 281, 272-280.	6.6	33
27	Engineering and microbiological aspects of BTEX removal in bioreactors under sulfate-reducing conditions. Chemical Engineering Journal, 2015, 260, 503-512.	6.6	28
28	Multivariate optimization of headspace-GC for the determination of monoaromatic compounds (benzene, toluene, ethylbenzene, and xylenes) in waters and wastewaters. Journal of Separation Science, 2014, 37, 265-271.	1.3	7
29	Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Science of the Total Environment, 2014, 490, 288-295.	3.9	134
30	Reductive Decolourisation of Sulphonated Mono and Diazo Dyes in One- and Two-Stage Anaerobic Systems. Applied Biochemistry and Biotechnology, 2013, 170, 1-14.	1.4	6
31	Impact of the redox mediator sodium anthraquinone-2,6-disulphonate (AQDS) on the reductive decolourisation of the azo dye Reactive Red 2 (RR2) in one- and two-stage anaerobic systems. Bioresource Technology, 2012, 121, 1-7.	4.8	42
32	Sequential Anaerobic/Aerobic Treatment of Dye-Containing Wastewaters: Colour and COD Removals, and Ecotoxicity Tests. Applied Biochemistry and Biotechnology, 2012, 166, 1057-1069.	1.4	32
33	Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresource Technology, 2010, 101, 7773-7779.	4.8	115