
Javier Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4281119/publications.pdf Version: 2024-02-01

INVIED RUIZ

#	Article	IF	CITATIONS
1	Episodic flood inundations of the northern plains of Mars. Icarus, 2003, 165, 53-67.	2.5	167
2	GRS evidence and the possibility of paleooceans on Mars. Planetary and Space Science, 2009, 57, 664-684.	1.7	107
3	The thermal evolution of Mars as constrained by paleo-heat flows. Icarus, 2011, 215, 508-517.	2.5	69
4	Claritas rise, Mars: Pre-Tharsis magmatism?. Journal of Volcanology and Geothermal Research, 2009, 185, 139-156.	2.1	66
5	Present-day heat flow model of Mars. Scientific Reports, 2017, 7, 45629.	3.3	50
6	The stability against freezing of an internal liquid-water ocean in Callisto. Nature, 2001, 412, 409-411.	27.8	41
7	Ancient heat flow, crustal thickness, and lithospheric mantle rheology in the Amenthes region, Mars. Earth and Planetary Science Letters, 2008, 270, 1-12.	4.4	41
8	Tharsis dome, Mars: New evidence for Noachian-Hesperian thick-skin and Amazonian thin-skin tectonics. Journal of Geophysical Research, 2001, 106, 7577-7589.	3.3	39
9	Lithospheric structure of Venus from gravity and topography. Icarus, 2015, 260, 215-231.	2.5	36
10	Thermal and mechanical structure of the central Iberian Peninsula lithosphere. Tectonophysics, 2002, 350, 49-62.	2.2	34
11	Neptune and Triton: Essential pieces of the Solar System puzzle. Planetary and Space Science, 2014, 104, 108-121.	1.7	34
12	Giant impacts and the initiation of plate tectonics on terrestrial planets. Planetary and Space Science, 2011, 59, 749-753.	1.7	33
13	New evidence for a magmatic influence on the origin of Valles Marineris, Mars. Journal of Volcanology and Geothermal Research, 2009, 185, 12-27.	2.1	31
14	Heat flow, lenticulae spacing, and possibility of convection in the ice shell of europa. Icarus, 2003, 162, 362-373.	2.5	30
15	Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth and Planetary Science Letters, 2014, 391, 55-66.	4.4	29
16	Heat flows through the ice lithosphere of Europa. Journal of Geophysical Research, 2000, 105, 29283-29289.	3.3	28
17	The heat flow of Europa. Icarus, 2005, 177, 438-446.	2.5	28
18	The early thermal and magnetic state of the cratered highlands of Mars. Earth and Planetary Science Letters, 2006, 241, 2-10.	4.4	27

JAVIER RUIZ

#	Article	IF	CITATIONS
19	Insolation driven variations of Mercury's lithospheric strength. Journal of Geophysical Research, 2011, 116, .	3.3	27
20	Heat flow and depth to a possible internal ocean on Triton. Icarus, 2003, 166, 436-439.	2.5	25
21	Depth of faulting and ancient heat flows in the Kuiper region of Mercury from lobate scarp topography. Planetary and Space Science, 2012, 60, 193-198.	1.7	25
22	The heat flow during the formation of ribbon terrains on Venus. Planetary and Space Science, 2007, 55, 2063-2070.	1.7	24
23	The early heat loss evolution of Mars and their implications for internal and environmental history. Scientific Reports, 2014, 4, 4338.	3.3	23
24	Thermal isostasy and deformation of possible paleoshorelines on Mars. Planetary and Space Science, 2004, 52, 1297-1301.	1.7	22
25	The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy. Journal of Geodynamics, 2012, 58, 29-37.	1.6	22
26	Humans Running at Stadiums and Beaches and the Accuracy of Speed Estimations from Fossil Trackways. Ichnos, 2013, 20, 31-35.	0.5	21
27	Evidence for a differentiated crust in Solis Planum, Mars, from lithospheric strength and heat flow. Icarus, 2006, 180, 308-313.	2.5	20
28	The present-day thermal state of Mars. Icarus, 2010, 207, 631-637.	2.5	19
29	Thrust fault modeling and Late-Noachian lithospheric structure of the circum-Hellas region, Mars. Icarus, 2017, 288, 53-68.	2.5	18
30	Thermal Diapirism and the Habitability of the Icy Shellof Europa. Origins of Life and Evolution of Biospheres, 2007, 37, 287-295.	1.9	17
31	Estimating the effective elastic thickness of the lithosphere of the Iberian peninsula based on multitaper spectral analysis. Geophysical Journal International, 2005, 160, 729-735.	2.4	15
32	Effective elastic thicknesses of the lithosphere in the Central Iberian Peninsula from heat flow: Implications for the rheology of the continental lithospheric mantle. Journal of Geodynamics, 2006, 41, 500-509.	1.6	15
33	Structural evolution of Lavinia Planitia, Venus: Implications for the tectonics of the lowland plains. Icarus, 2010, 206, 210-228.	2.5	14
34	Structural control of scarps in the Rembrandt region of Mercury. Icarus, 2012, 219, 511-514.	2.5	13
35	The hand structure of <i>Carnotaurus sastrei</i> (Theropoda, Abelisauridae): implications for hand diversity and evolution in abelisaurids. Palaeontology, 2011, 54, 1271-1277.	2.2	11
36	Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies. Icarus, 2007, 190, 145-154.	2.5	10

Javier Ruiz

#	Article	IF	CITATIONS
37	3D modeling of planetary lobate scarps: The case of Ogygis Rupes, Mars. Earth and Planetary Science Letters, 2020, 532, 116004.	4.4	10
38	Equilibrium Convection on a Tidally Heated and Stressed Icy Shell of Europa for a Composite Water Ice Rheology. Earth, Moon and Planets, 2010, 107, 157-167.	0.6	8
39	Structural modeling of lobate scarps in the NW margin of Argyre impact basin, Mars. Icarus, 2019, 319, 367-380.	2.5	8
40	Subsurface Geometry and Emplacement Conditions of a Giant Dike System in Elysium Fossae, Mars. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	7
41	Regional heat flow and subsurface temperature patterns at Elysium Planitia and Oxia Planum areas, Mars. Icarus, 2021, 353, 113379.	2.5	7
42	Giant dikes and dike-induced seismicity in a weak crust underneath Cerberus Fossae, Mars. Earth and Planetary Science Letters, 2022, 594, 117692.	4.4	7
43	Influence of an insulating megaregolith on heat flow and crustal temperature structure of Mercury. Icarus, 2014, 232, 220-225.	2.5	6
44	Fast-running theropods tracks from the Early Cretaceous of La Rioja, Spain. Scientific Reports, 2021, 11, 23095.	3.3	6
45	Amplitude of heat flow variations on Mars from possible shoreline topography. Journal of Geophysical Research, 2003, 108, .	3.3	5
46	Heat flow in Triton: Implications for heat sources powering recent geologic activity. Planetary and Space Science, 2018, 160, 19-25.	1.7	5
47	Evidence of thrust faulting and widespread contraction of Ceres. Nature Astronomy, 2019, 3, 916-921.	10.1	5
48	Lithospheric Contraction on Mars: A 3D Model of the Amenthes Thrust Fault System. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006201.	3.6	5
49	Onset of Convection, Heat Flow and Thickness of the Europaâ€~̃s ice Shell. Earth, Moon and Planets, 1997, 77, 99-104.	0.6	4
50	Possibility of Convection for Diffusion (Newtonian) Viscosity in the Ice Shell of Europa?. Earth, Moon and Planets, 2003, 93, 281-287.	0.6	4
51	Seas under ice: Stability of liquid-water oceans within icy worlds. Earth, Moon and Planets, 2006, 97, 79-90.	0.6	4
52	The very early thermal state of Terra Cimmeria: Implications for magnetic carriers in the crust of Mars. Icarus, 2009, 203, 454-459.	2.5	4
53	The South Pole-Aitken basin region, Moon: GIS-based geologic investigation using Kaguya elemental information. Advances in Space Research, 2012, 50, 1629-1637.	2.6	4
54	Timing of chaotic terrain formation in Argadnel Regio, Europa, and implications for geological history. Planetary and Space Science, 2016, 130, 24-29.	1.7	4

Javier Ruiz

#	Article	IF	CITATIONS
55	Heat flow evolution of the Earth from paleomantle temperatures: Evidence for increasing heat loss since â^¼2.5 Ga. Physics of the Earth and Planetary Interiors, 2017, 269, 165-171.	1.9	4
56	Comments on "Using the viscoelastic relaxation of large impact craters to study the thermal history of Mars―(Karimi etÂal., 2016, Icarus 272, 102–113) and "Studying lower crustal flow beneath mead basin: Implications for the thermal history and rheology of Venus―(Karimi and Dombard, 2017, Icarus 282,) Tj ETQq0 0	ဝိrgBT /C	Overlock 10 T
57	Modeling of Landslides in Valles Marineris, Mars, and Implications for Initiation Mechanism. Earth, Moon and Planets, 2016, 118, 15-26.	0.6	3
58	The thermal structure and mechanical behavior of the martian lithosphere. Icarus, 2021, 353, 113635.	2.5	3
59	The stability of a liquid-water body below the south polar cap of Mars. Icarus, 2022, 383, 115073.	2.5	3
60	Strong Calcite-Like Spectra Cathodoluminescence Emission from Allende Meteorite Cai Phases. Spectroscopy Letters, 2011, 44, 516-520.	1.0	2
61	Paleo-heat flows, radioactive heat generation, and the cooling and deformation history of Mercury. Icarus, 2013, 225, 86-92.	2.5	2
62	Comments on "A tyrannosaur trackway at Glenrock, Lance Formation (Maastrichtian), Wyoming― (Smith etÂal., Cretaceous Research, v. 61, pp. 1–4, 2016). Cretaceous Research, 2018, 82, 81-82.	1.4	2
63	Heat Flow and Thermal State of the Crust of the Icy Galilean Satellites. Earth, Moon and Planets, 2012, 109, 117-125.	0.6	1
64	Evidence for two stages of compressive deformation in a buried basin of Mercury. Icarus, 2015, 254, 18-23.	2.5	1
65	On the calculation of occlusal bite pressures for fossil hominins. Journal of Human Evolution, 2017, 102, 67-71.	2.6	1
66	Is Earth-based scaling a valid procedure for calculating heat flows for Mars?. Icarus, 2013, 226, 536-540.	2.5	0
67	From hot to cold? – Hydrothermal activities as a source for icy-debris flows on Dryas Mons, Terra Sirenum, Mars. Icarus, 2021, 372, 114698.	2.5	0