Michael Nyberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280945/publications.pdf

Version: 2024-02-01

67	2.470	172207	214527
67	2,478 citations	29	47
papers	citations	h-index	g-index
69	69	69	3044
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. Journal of Physiology, 2013, 591, 5047-5059.	1.3	206
2	Vasodilator interactions in skeletal muscle blood flow regulation. Journal of Physiology, 2012, 590, 6297-6305.	1.3	159
3	Cardiovascular Adaptations to Exercise Training. , 2015, 6, 1-32.		146
4	Influence of nitrate supplementation on <scp>VO₂</scp> kinetics and endurance of elite cyclists. Scandinavian Journal of Medicine and Science in Sports, 2013, 23, e21-31.	1.3	108
5	Lifelong physical activity prevents an ageâ€related reduction in arterial and skeletal muscle nitric oxide bioavailability in humans. Journal of Physiology, 2012, 590, 5361-5370.	1.3	99
6	Adenosine Contributes to Blood Flow Regulation in the Exercising Human Leg by Increasing Prostaglandin and Nitric Oxide Formation. Hypertension, 2009, 53, 993-999.	1.3	91
7	Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of highâ€intensity aerobic training. Journal of Physiology, 2012, 590, 1481-1494.	1.3	90
8	Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. Journal of Physiology, 2011, 589, 1847-1857.	1.3	88
9	Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg. Journal of Physiology, 2012, 590, 6227-6236.	1.3	86
10	The hyperaemic response to passive leg movement is dependent on nitric oxide: a new tool to evaluate endothelial nitric oxide function. Journal of Physiology, 2012, 590, 4391-4400.	1.3	85
11	Exercise training modulates functional sympatholysis and αâ€adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals. Journal of Physiology, 2014, 592, 3063-3073.	1.3	63
12	Effects of high-intensity training on cardiovascular risk factors in premenopausal and postmenopausal women. American Journal of Obstetrics and Gynecology, 2017, 216, 384.e1-384.e11.	0.7	58
13	Exercise Training Alters the Balance Between Vasoactive Compounds in Skeletal Muscle of Individuals With Essential Hypertension. Hypertension, 2011, 58, 943-949.	1.3	52
14	Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity?. Free Radical Research, 2014, 48, 71-83.	1.5	52
15	Interstitial and Plasma Adenosine Stimulate Nitric Oxide and Prostacyclin Formation in Human Skeletal Muscle. Hypertension, 2010, 56, 1102-1108.	1.3	50
16	Physical activity opposes the ageâ€related increase in skeletal muscle and plasma endothelinâ€1 levels and normalizes plasma endothelinâ€1 levels in individuals with essential hypertension. Acta Physiologica, 2013, 207, 524-535.	1.8	47
17	Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1111-H1119.	1.5	47
18	Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radical Biology and Medicine, 2014, 73, 166-173.	1.3	46

#	Article	IF	CITATIONS
19	Early Postmenopausal Phase Is Associated With Reduced Prostacyclin-Induced Vasodilation That Is Reversed by Exercise Training. Hypertension, 2016, 68, 1011-1020.	1.3	46
20	Beta ₂ â€adrenoceptor agonist salbutamol increases protein turnover rates and alters signalling in skeletal muscle after resistance exercise in young men. Journal of Physiology, 2018, 596, 4121-4139.	1.3	46
21	Cycling with blood flow restriction improves performance and muscle K ⁺ regulation and alters the effect of antiâ€oxidant infusion in humans. Journal of Physiology, 2019, 597, 2421-2444.	1.3	46
22	Biomarkers of vascular function in premenopausal and recent postmenopausal women of similar age: effect of exercise training. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R510-R517.	0.9	45
23	Capillary growth, ultrastructure remodelling and exercise training in skeletal muscle of essential hypertensive patients. Acta Physiologica, 2015, 214, 210-220.	1.8	45
24	Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Medicine and Science in Sports and Exercise, 2016, 48, 1355-1364.	0.2	44
25	Effects of exercise training and resveratrol on vascular health in aging. Free Radical Biology and Medicine, 2016, 98, 165-176.	1.3	41
26	Contraction-induced secretion of VEGF from skeletal muscle cells is mediated by adenosine. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H857-H862.	1.5	37
27	Impaired formation of vasodilators in peripheral tissue in essential hypertension is normalized by exercise training. Journal of Hypertension, 2012, 30, 2007-2014.	0.3	36
28	Insulinâ€induced membrane permeability to glucose in human muscles at rest and following exercise. Journal of Physiology, 2020, 598, 303-315.	1.3	35
29	Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 60-73.	1.3	34
30	Leg vascular and skeletal muscle mitochondrial adaptations to aerobic highâ€intensity exercise training are enhanced in the early postmenopausal phase. Journal of Physiology, 2017, 595, 2969-2983.	1.3	32
31	Probenecid Inhibits α-Adrenergic Receptor–Mediated Vasoconstriction in the Human Leg Vasculature. Hypertension, 2018, 71, 151-159.	1.3	32
32	Contribution of intravascular <i>versus</i> interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans. Journal of Physiology, 2012, 590, 5015-5023.	1.3	29
33	Low-volume high-intensity swim training is superior to high-volume low-intensity training in relation to insulin sensitivity and glucose control in inactive middle-aged women. European Journal of Applied Physiology, 2016, 116, 1889-1897.	1.2	26
34	Adaptations with Intermittent Exercise Training in Post- and Premenopausal Women. Medicine and Science in Sports and Exercise, 2017, 49, 96-105.	0.2	26
35	Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R843-R848.	0.9	25
36	Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism. Menopause, 2018, 25, 165-175.	0.8	21

#	Article	IF	CITATIONS
37	Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R281-R290.	0.9	20
38	Infusion of ATP increases leg oxygen delivery but not oxygen uptake in the initial phase of intense kneeâ€extensor exercise in humans. Experimental Physiology, 2014, 99, 1399-1408.	0.9	20
39	Reduced blood flow to contracting skeletal muscle in ageing humans: is it all an effect of sand through the hourglass?. Journal of Physiology, 2016, 594, 2297-2305.	1.3	19
40	Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans. Physiological Reports, 2015, 3, e12508.	0.7	18
41	Cardiac Adaptations to Highâ€Intensity Aerobic Training in Premenopausal and Recent Postmenopausal Women: The Copenhagen Women Study. Journal of the American Heart Association, 2017, 6, .	1.6	18
42	Exercise training improves blood flow to contracting skeletal muscle of older men via enhanced cGMP signaling. Journal of Applied Physiology, 2018, 124, 109-117.	1.2	16
43	Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre―and postmenopausal women. Journal of Thrombosis and Haemostasis, 2017, 15, 2419-2431.	1.9	15
44	The Endothelial Mechanotransduction Protein Platelet Endothelial Cell Adhesion Molecule-1 Is Influenced by Aging and Exercise Training in Human Skeletal Muscle. Frontiers in Physiology, 2018, 9, 1807.	1.3	15
45	Nitrateâ€rich beetroot juice ingestion reduces skeletal muscle O ₂ uptake and blood flow during exercise in sedentary men. Journal of Physiology, 2021, 599, 5203-5214.	1.3	14
46	Physiological determinants of elite mountain bike cross-country Olympic performance. Journal of Sports Sciences, 2019, 37, 1154-1161.	1.0	12
47	Effect of PDE5 inhibition on the modulation of sympathetic \hat{l} ±-adrenergic vasoconstriction in contracting skeletal muscle of young and older recreationally active humans. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1867-H1875.	1.5	10
48	Essential hypertension is associated with blunted smooth muscle cell vasodilator responsiveness and is reversed by 10-20-30 training in men. American Journal of Physiology - Cell Physiology, 2020, 318, C1252-C1263.	2.1	10
49	Leg oxygen uptake in the initial phase of intense exercise is slowed by a marked reduction in oxygen delivery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R313-R321.	0.9	9
50	Matching of O2 Utilization and O2 Delivery in Contracting Skeletal Muscle in Health, Aging, and Heart Failure. Frontiers in Physiology, 0, 13 , .	1.3	9
51	Effect of menopause and exercise training on plasma apolipoprotein M and sphingosine-1-phosphate. Journal of Applied Physiology, 2019, 126, 214-220.	1.2	8
52	Hypertension is associated with blunted NO-mediated leg vasodilator responsiveness that is reversed by high-intensity training in postmenopausal women. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R712-R723.	0.9	8
53	Effects of High-Intensity Exercise Training on Adipose Tissue Mass, Glucose Uptake and Protein Content in Pre- and Post-menopausal Women. Frontiers in Sports and Active Living, 2020, 2, 60.	0.9	7
54	Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells, 2022, 11, 1657.	1.8	7

#	Article	IF	CITATIONS
55	Effect of high-intensity exercise training on functional sympatholysis in young and older habitually active men. Translational Sports Medicine, 2018, 1, 37-45.	0.5	5
56	Effects of aging and exercise training on leg hemodynamics and oxidative metabolism in the transition from rest to steady-state exercise: role of cGMP signaling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R274-R283.	0.9	5
57	The effect of tyramine infusion and exercise on blood flow, coagulation and clot microstructure in healthy individuals. Thrombosis Research, 2018, 170, 32-37.	0.8	4
58	Cardiac perfusion and function after high-intensity exercise training in late premenopausal and recent postmenopausal women: an MRI study. Journal of Applied Physiology, 2019, 126, 1272-1280.	1.2	3
59	The Impact of Lower Limb Immobilization and Rehabilitation on Angiogenic Proteins and Capillarization in Skeletal Muscle. Medicine and Science in Sports and Exercise, 2021, 53, 1797-1806.	0.2	3
60	Menopausal transition does not influence skeletal muscle capillary growth in response to cycle training in women. Journal of Applied Physiology, 2021, 131, 369-375.	1.2	2
61	A neutralizing antibody against DKK1 does not reduce plaque formation in classical murine models of atherosclerosis: Is the therapeutic potential lost in translation?. Atherosclerosis, 2020, 314, 1-9.	0.4	1
62	Semaglutide treatment attenuates vessel remodelling in ApoEâ^'/â^' mice following vascular injury and blood flow perturbation. Atherosclerosis Plus, 2022, , .	0.3	1
63	Exercise training reverses an ageâ€related attenuation in ATP signaling in human skeletal muscle. Translational Sports Medicine, 2019, 2, 248-255.	0.5	0
64	Reply to "Letter to the editor: In response to Gunnarsson et al. on improving the quality of exercise interventions― American Journal of Physiology - Cell Physiology, 2020, 319, C908-C909.	2.1	0
65	The adenosine system in skeletal muscle of individuals with essential hypertension and the effect of physical training. FASEB Journal, 2012, 26, 872.12.	0.2	0
66	Resveratrol blunts the positive effects of exercise training in aged men; a doubleâ€blind, randomized, placeboâ€controlled training study. FASEB Journal, 2013, 27, 1143.7.	0.2	0
67	Does a compensatory formation of nitric oxide during inhibition of prostanoid synthesis in skeletal muscle explain the redundancy between these vasoactive systems?. FASEB Journal, 2013, 27, 898.7.	0.2	O