
Adrian J Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280839/publications.pdf Version: 2024-02-01

Δηριανί Πας

#	Article	IF	CITATIONS
1	North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
2	Crowding, climate, and the case for social distancing among trees. Ecological Applications, 2022, 32, e2507.	3.8	20
3	Empirically validated drought vulnerability mapping in the mixed conifer forests of the <scp>Sierra Nevada</scp> . Ecological Applications, 2022, 32, e2514.	3.8	9
4	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
5	Seed production patterns of surviving Sierra Nevada conifers show minimal change following drought. Forest Ecology and Management, 2021, 480, 118598.	3.2	5
6	Mortality predispositions of conifers across western USA. New Phytologist, 2021, 229, 831-844.	7.3	11
7	Effects of postfire climate and seed availability on postfire conifer regeneration. Ecological Applications, 2021, 31, e02280.	3.8	33
8	Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 2021, 12, 1242.	12.8	46
9	Why is Tree Drought Mortality so Hard to Predict?. Trends in Ecology and Evolution, 2021, 36, 520-532.	8.7	130
10	Mapping the vulnerability of giant sequoias after extreme drought in California using remote sensing. Ecological Applications, 2021, 31, e02395.	3.8	2
11	Nonlinear shifts in infectious rust disease due to climate change. Nature Communications, 2021, 12, 5102.	12.8	33
12	Forest Resistance to Extended Drought Enhanced by Prescribed Fire in Low Elevation Forests of the Sierra Nevada. Forests, 2021, 12, 1248.	2.1	5
13	Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species. Ecosphere, 2020, 11, e03263.	2.2	16
14	The influence of pre-fire growth patterns on post-fire tree mortality for common conifers in western US parks. International Journal of Wildland Fire, 2020, 29, 513.	2.4	11
15	TREE MORTALITY IN BLUE OAK WOODLAND DURING EXTREME DROUGHT IN SEQUOIA NATIONAL PARK, CALIFORNIA. Madro $\tilde{A}\pm$ o, 2020, 66, 164.	0.4	10
16	Negative impacts of summer heat on Sierra Nevada tree seedlings. Ecosphere, 2019, 10, e02776.	2.2	8
17	Which trees die during drought? The key role of insect hostâ€ŧree selection. Journal of Ecology, 2019, 107, 2383-2401.	4.0	127
18	Individual species–area relationships in temperate coniferous forests. Journal of Vegetation Science, 2018, 29, 317-324.	2.2	15

Adrian J Das

#	Article	IF	CITATIONS
19	Leaf to landscape responses of giant sequoia to hotter drought: An introduction and synthesis for the special section. Forest Ecology and Management, 2018, 419-420, 249-256.	3.2	9
20	Landscape-scale variation in canopy water content of giant sequoias during drought. Forest Ecology and Management, 2018, 419-420, 291-304.	3.2	19
21	Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought. Forest Ecology and Management, 2018, 419-420, 279-290.	3.2	31
22	Patterns and correlates of giant sequoia foliage dieback during California's 2012–2016 hotter drought. Forest Ecology and Management, 2018, 419-420, 268-278.	3.2	33
23	Preâ€fire drought and competition mediate postâ€fire conifer mortality in western U.S. National Parks. Ecological Applications, 2018, 28, 1730-1739.	3.8	52
24	Seasonal and Diel Environmental Conditions Predict Western Pond Turtle (Emys marmorata) Behavior at a Perennial and an Ephemeral Stream in Sequoia National Park, California. Chelonian Conservation and Biology, 2017, 16, 20.	0.6	2
25	What mediates tree mortality during drought in the southern Sierra Nevada?. Ecological Applications, 2017, 27, 2443-2457.	3.8	74
26	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
27	Does Prescribed Fire Promote Resistance to Drought in Low Elevation Forests of the Sierra Nevada, California, USA?. Fire Ecology, 2016, 12, 13-25.	3.0	61
28	Why do trees die? Characterizing the drivers of background tree mortality. Ecology, 2016, 97, 2616-2627.	3.2	110
29	The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park. Canadian Journal of Forest Research, 2015, 45, 910-919.	1.7	25
30	Improving estimates of tree mortality probability using potential growth rate. Canadian Journal of Forest Research, 2015, 45, 920-928.	1.7	18
31	An individual-based growth and competition model for coastal redwood forest restoration. Canadian Journal of Forest Research, 2014, 44, 1051-1057.	1.7	8
32	Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests. PLoS ONE, 2013, 8, e69917.	2.5	71
33	The effect of size and competition on tree growth rate in old-growth coniferous forests. Canadian Journal of Forest Research, 2012, 42, 1983-1995.	1.7	54
34	The contribution of competition to tree mortality in old-growth coniferous forests. Forest Ecology and Management, 2011, 261, 1203-1213.	3.2	126
35	Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of the Sierra Nevada, California. Climatic Change, 2008, 87, 193-213.	3.6	61
36	SPATIAL ELEMENTS OF MORTALITY RISK IN OLD-GROWTH FORESTS. Ecology, 2008, 89, 1744-1756.	3.2	105

#	Article	IF	CITATIONS
37	The relationship between tree growth patterns and likelihood of mortality: a study of two tree species in the Sierra Nevada. Canadian Journal of Forest Research, 2007, 37, 580-597.	1.7	87