Adrian J Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280839/publications.pdf

Version: 2024-02-01

37 papers	1,870	20	38
	citations	h-index	g-index
40	40	40	3090
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
2	Why is Tree Drought Mortality so Hard to Predict?. Trends in Ecology and Evolution, 2021, 36, 520-532.	8.7	130
3	Which trees die during drought? The key role of insect hostâ€ŧree selection. Journal of Ecology, 2019, 107, 2383-2401.	4.0	127
4	The contribution of competition to tree mortality in old-growth coniferous forests. Forest Ecology and Management, 2011, 261, 1203-1213.	3.2	126
5	Why do trees die? Characterizing the drivers of background tree mortality. Ecology, 2016, 97, 2616-2627.	3.2	110
6	SPATIAL ELEMENTS OF MORTALITY RISK IN OLD-GROWTH FORESTS. Ecology, 2008, 89, 1744-1756.	3.2	105
7	The relationship between tree growth patterns and likelihood of mortality: a study of two tree species in the Sierra Nevada. Canadian Journal of Forest Research, 2007, 37, 580-597.	1.7	87
8	What mediates tree mortality during drought in the southern Sierra Nevada?. Ecological Applications, 2017, 27, 2443-2457.	3.8	74
9	Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests. PLoS ONE, 2013, 8, e69917.	2.5	71
10	Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of the Sierra Nevada, California. Climatic Change, 2008, 87, 193-213.	3.6	61
11	Does Prescribed Fire Promote Resistance to Drought in Low Elevation Forests of the Sierra Nevada, California, USA?. Fire Ecology, 2016, 12, 13-25.	3.0	61
12	The effect of size and competition on tree growth rate in old-growth coniferous forests. Canadian Journal of Forest Research, 2012, 42, 1983-1995.	1.7	54
13	Preâ€fire drought and competition mediate postâ€fire conifer mortality in western U.S. National Parks. Ecological Applications, 2018, 28, 1730-1739.	3.8	52
14	Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 2021, 12, 1242.	12.8	46
15	Patterns and correlates of giant sequoia foliage dieback during California's 2012–2016 hotter drought. Forest Ecology and Management, 2018, 419-420, 268-278.	3.2	33
16	Effects of postfire climate and seed availability on postfire conifer regeneration. Ecological Applications, 2021, 31, e02280.	3.8	33
17	Nonlinear shifts in infectious rust disease due to climate change. Nature Communications, 2021, 12, 5102.	12.8	33
18	Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought. Forest Ecology and Management, 2018, 419-420, 279-290.	3.2	31

#	Article	IF	Citations
19	North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
20	The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park. Canadian Journal of Forest Research, 2015, 45, 910-919.	1.7	25
21	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
22	Crowding, climate, and the case for social distancing among trees. Ecological Applications, 2022, 32, e2507.	3.8	20
23	Landscape-scale variation in canopy water content of giant sequoias during drought. Forest Ecology and Management, 2018, 419-420, 291-304.	3.2	19
24	Improving estimates of tree mortality probability using potential growth rate. Canadian Journal of Forest Research, 2015, 45, 920-928.	1.7	18
25	Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species. Ecosphere, 2020, 11, e03263.	2.2	16
26	Individual species–area relationships in temperate coniferous forests. Journal of Vegetation Science, 2018, 29, 317-324.	2.2	15
27	Mortality predispositions of conifers across western USA. New Phytologist, 2021, 229, 831-844.	7.3	11
28	The influence of pre-fire growth patterns on post-fire tree mortality for common conifers in western US parks. International Journal of Wildland Fire, 2020, 29, 513.	2.4	11
29	TREE MORTALITY IN BLUE OAK WOODLAND DURING EXTREME DROUGHT IN SEQUOIA NATIONAL PARK, CALIFORNIA. Madroño, 2020, 66, 164.	0.4	10
30	Leaf to landscape responses of giant sequoia to hotter drought: An introduction and synthesis for the special section. Forest Ecology and Management, 2018, 419-420, 249-256.	3.2	9
31	Empirically validated drought vulnerability mapping in the mixed conifer forests of the <scp>Sierra Nevada</scp> . Ecological Applications, 2022, 32, e2514.	3.8	9
32	An individual-based growth and competition model for coastal redwood forest restoration. Canadian Journal of Forest Research, 2014, 44, 1051-1057.	1.7	8
33	Negative impacts of summer heat on Sierra Nevada tree seedlings. Ecosphere, 2019, 10, e02776.	2.2	8
34	Seed production patterns of surviving Sierra Nevada conifers show minimal change following drought. Forest Ecology and Management, 2021, 480, 118598.	3.2	5
35	Forest Resistance to Extended Drought Enhanced by Prescribed Fire in Low Elevation Forests of the Sierra Nevada. Forests, 2021, 12, 1248.	2.1	5
36	Seasonal and Diel Environmental Conditions Predict Western Pond Turtle (Emys marmorata) Behavior at a Perennial and an Ephemeral Stream in Sequoia National Park, California. Chelonian Conservation and Biology, 2017, 16, 20.	0.6	2

ADRIAN J DAS

#	Article	IF	CITATIONS
37	Mapping the vulnerability of giant sequoias after extreme drought in California using remote sensing. Ecological Applications, 2021, 31, e02395.	3.8	2