List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280744/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
3	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
4	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
5	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	16.7	716
6	Observing binary inspiral in gravitational radiation: One interferometer. Physical Review D, 1993, 47, 2198-2219.	4.7	572
7	The International Pulsar Timing Array project: using pulsars as a gravitational wave detector. Classical and Quantum Gravity, 2010, 27, 084013.	4.0	494
8	Detection, measurement, and gravitational radiation. Physical Review D, 1992, 46, 5236-5249.	4.7	465
9	The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. Physical Review Letters, 1993, 70, 2984-2987.	7.8	431
10	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
11	LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES. Astrophysical Journal, 2013, 762, 94.	4.5	270
12	Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 154-179.	1.6	259
13	Black-hole spectroscopy: testing general relativity through gravitational-wave observations. Classical and Quantum Gravity, 2004, 21, 787-803.	4.0	237
14	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
15	IndIGO AND LIGO-INDIA: SCOPE AND PLANS FOR GRAVITATIONAL WAVE RESEARCH AND PRECISION METROLOGY IN INDIA. International Journal of Modern Physics D, 2013, 22, 1341010.	2.1	174
16	Setting upper limits on the strength of periodic gravitational waves from PSRJ1939+2134using the first science data from the GEO 600 and LIGO detectors. Physical Review D, 2004, 69, .	4.7	165
17	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160
18	Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA. Physical Review D, 2000, 62, .	4.7	157

#	Article	IF	CITATIONS
19	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
20	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143
21	Bounding the mass of the graviton using binary pulsar observations. Physical Review D, 2002, 65, .	4.7	138
22	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
23	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	7.8	130
24	Gravitational radiation from a particle in circular orbit around a black hole. II. Numerical results for the nonrotating case. Physical Review D, 1993, 47, 1511-1518.	4.7	129
25	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	4.7	128
26	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	4.7	126
27	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
28	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	4.7	121
29	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
30	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	4.7	120
31	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	1.6	120
32	Binary inspiral, gravitational radiation, and cosmology. Physical Review D, 1996, 53, 2878-2894.	4.7	119
33	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
34	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	4.7	110
35	First upper limits from LIGO on gravitational wave bursts. Physical Review D, 2004, 69, .	4.7	108
36	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107

LEE SAMUEL SAMUEL FINN

#	Article	IF	CITATIONS
37	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
38	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	105
39	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
40	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
41	Gravitational Wave Extraction and Outer Boundary Conditions by Perturbative Matching. Physical Review Letters, 1998, 80, 1812-1815.	7.8	102
42	Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision. Physical Review Letters, 1998, 80, 2512-2516.	7.8	102
43	Gravitational radiation, inspiraling binaries, and cosmology. Astrophysical Journal, 1993, 411, L5.	4.5	100
44	Determining gravitational radiation from Newtonian self-gravitating systems. Astrophysical Journal, 1990, 351, 588.	4.5	95
45	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
46	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
47	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
48	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	4.7	90
49	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
50	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	7.8	89
51	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
52	Stable Characteristic Evolution of Generic Three-Dimensional Single-Black-Hole Spacetimes. Physical Review Letters, 1998, 80, 3915-3918.	7.8	87
53	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
54	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	4.7	85

#	Article	IF	CITATIONS
55	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
56	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
57	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	4.7	83
58	Gravitational-wave probe of effective quantum gravity. Physical Review D, 2008, 78, .	4.7	82
59	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. Physical Review D, 2005, 72, .	4.7	79
60	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	4.7	79
61	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
62	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	4.7	78
63	Search for gravitational waves from binary black hole inspirals in LIGO data. Physical Review D, 2006, 73, .	4.7	75
64	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
65	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
66	Detecting an association between gamma ray and gravitational wave bursts. Physical Review D, 1999, 60, .	4.7	71
67	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
68	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
69	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
70	Aperture synthesis for gravitational-wave data analysis: Deterministic sources. Physical Review D, 2001, 63, .	4.7	63
71	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
72	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	4.7	60

#	Article	IF	CITATIONS
73	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
74	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
75	Upper limits on gravitational wave bursts in LIGO's second science run. Physical Review D, 2005, 72, .	4.7	57
76	DETECTION, LOCALIZATION, AND CHARACTERIZATION OF GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY. Astrophysical Journal, 2010, 718, 1400-1415.	4.5	57
77	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
78	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	4.7	54
79	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
80	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>1806</mml:mn><mml:mo>â^'</mml:mo><mml:mn>20</mml:mn></mml:math> hypert of 27 December 2004 using LIGO. Physical Review D. 2007. 76.	flare	51
81	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
82	An overview of the second round of the Mock LISA Data Challenges. Classical and Quantum Gravity, 2007, 24, S551-S564.	4.0	48
83	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85, .	4.7	48
84	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	4.7	45
85	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
86	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
87	Observational Constraints on the Neutron Star Mass Distribution. Physical Review Letters, 1994, 73, 1878-1881.	7.8	42
88	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	4.7	40
89	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	4.0	40
90	Maximum Entropy for Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core ollapse Supernovae. Astrophysical Journal, 2008, 678, 1142-1157.	4.5	40

#	Article	IF	CITATIONS
91	The transient gravitational-wave sky. Classical and Quantum Gravity, 2013, 30, 193002.	4.0	40
92	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	4.7	38
93	Used percentage veto for LIGO and virgo binary inspiral searches. Journal of Physics: Conference Series, 2010, 243, 012005.	0.4	37
94	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	4.7	35
95	Report on the first round of the Mock LISA Data Challenges. Classical and Quantum Gravity, 2007, 24, S529-S539.	4.0	33
96	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	32
97	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
98	Overview of the BlockNormal event trigger generator. Classical and Quantum Gravity, 2004, 21, S1705-S1710.	4.0	31
99	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
100	Pulsar timing array observations of gravitational wave source timing parallax. Monthly Notices of the Royal Astronomical Society, 2011, 414, 50-58.	4.4	30
101	Event Rate for Extreme Mass Ratio Burst Signals in the Laser Interferometer Space Antenna Band. Astrophysical Journal, 2006, 649, L25-L28.	4.5	29
102	Detecting a stochastic gravitational-wave background: The overlap reduction function. Physical Review D, 2009, 79, .	4.7	29
103	OPTIMIZING PULSAR TIMING ARRAYS TO MAXIMIZE GRAVITATIONAL WAVE SINGLE-SOURCE DETECTION: A FIRST CUT. Astrophysical Journal, 2011, 730, 17.	4.5	28
104	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
105	Response of interferometric gravitational wave detectors. Physical Review D, 2009, 79, .	4.7	26
106	Spectral methods for numerical relativity: The initial data problem. Physical Review D, 2000, 62, .	4.7	23
107	Gravitational Waves from Extragalactic Inspiraling Binaries: Selection Effects and Expected Detection Rates. Astrophysical Journal, 2004, 612, 364-374.	4.5	23
108	Modulating the experimental signature of a stochastic gravitational wave background. Physical Review D, 2001, 64, .	4.7	22

#	Article	IF	CITATIONS
109	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
110	Constraining effective quantum gravity with LISA. Journal of Physics: Conference Series, 2009, 154, 012041.	0.4	22
111	Trompe L'Oeil 'binary' pulsars. Astrophysical Journal, 1990, 348, 226.	4.5	19
112	Non-radial pulsations of neutron stars with a crust. Monthly Notices of the Royal Astronomical Society, 1990, 245, 82-82.	4.4	19
113	GRAVITATIONAL WAVE HOTSPOTS: RANKING POTENTIAL LOCATIONS OF SINGLE-SOURCE GRAVITATIONAL WAVE EMISSION. Astrophysical Journal, 2014, 784, 60.	4.5	18
114	Bounding the graviton mass with binary pulsar observations. Classical and Quantum Gravity, 2002, 19, 1355-1360.	4.0	17
115	Noise Line Identification in LIGO S6 and Virgo VSR2. Journal of Physics: Conference Series, 2010, 243, 012010.	0.4	17
116	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	4.0	16
117	Data quality studies of enhanced interferometric gravitational wave detectors. Classical and Quantum Gravity, 2012, 29, 124010.	4.0	15
118	LIGO-Virgo searches for gravitational waves from coalescing binaries: A status update. Journal of Physics: Conference Series, 2010, 228, 012002.	0.4	13
119	Physical response of light-time gravitational wave detectors. Physical Review D, 2014, 90, .	4.7	13
120	Improving the efficiency of the detection of gravitational wave signals from inspiraling compact binaries: Chebyshev interpolation. Physical Review D, 2005, 72, .	4.7	12
121	No statistical excess in EXPLORER/NAUTILUS observations in the year 2001. Classical and Quantum Gravity, 2003, 20, L37-L44.	4.0	11
122	Detectability of Gravitational Radiation from Stellar-Core Collapse. Annals of the New York Academy of Sciences, 1991, 631, 156-172.	3.8	10
123	Gravitational waves from solar oscillations: Proposal for a transition-zone test of general relativity. Classical and Quantum Gravity, 1985, 2, 381-402.	4.0	9
124	Optimal location of a new interferometric gravitational wave observatory. Physical Review D, 2006, 73, .	4.7	9
125	RÃ mer time-delay determination of the gravitational-wave propagation speed. Physical Review D, 2013, 88, .	4.7	9
126	Astronomy and astrophysics with gravitational waves in the advanced detector era. Classical and Quantum Gravity, 2012, 29, 124012.	4.0	8

#	Article	IF	CITATIONS
127	Searching for continuous gravitational wave signals using LIGO and Virgo detectors. Journal of Physics: Conference Series, 2012, 354, 012010.	0.4	8
128	Spin-down of rapidly rotating neutron stars. Astrophysical Journal, 1990, 359, 444.	4.5	8
129	Open questions in astrophysically triggered gravitational wave searches. Journal of Physics: Conference Series, 2010, 243, 012001.	0.4	7
130	Joint searches for gravitational waves and high-energy neutrinos. Journal of Physics: Conference Series, 2010, 243, 012002.	0.4	7
131	OPTIMIZATION OF NANOGRAV'S TIME ALLOCATION FOR MAXIMUM SENSITIVITY TO SINGLE SOURCES. Astrophysical Journal, 2014, 794, 163.	4.5	7
132	Recent results on the search for continuous sources with LIGO and GEO 600. Journal of Physics: Conference Series, 2006, 39, 36-38.	0.4	6
133	Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts. Journal of Physics: Conference Series, 2012, 363, 012034.	0.4	6
134	Plans for the LIGO–TAMA joint search for gravitational wave bursts. Classical and Quantum Gravity, 2004, 21, S1801-S1807.	4.0	5
135	SwiftPointing and the Association between Gammaâ€Ray Bursts and Gravitational Wave Bursts. Astrophysical Journal, 2004, 607, 384-390.	4.5	5
136	GravEn: software for the simulation of gravitational wave detector network response. Classical and Quantum Gravity, 2006, 23, S799-S807.	4.0	5
137	Searching for gravitational waves with LIGO. Journal of Physics: Conference Series, 2008, 110, 062024.	0.4	5
138	The status of laser interferometer gravitational-wave detectors. Journal of Physics: Conference Series, 2006, 39, 25-31.	0.4	4
139	Event Rate for Extreme Mass Ratio Burst Signals in the LISA Band. AIP Conference Proceedings, 2006, , .	0.4	4
140	Hierarchical Hough all-sky search for periodic gravitational waves in LIGO S5 data. Journal of Physics: Conference Series, 2010, 228, 012004.	0.4	4
141	Rapid alerts for following up gravitational wave event candidates. , 2012, , .		4
142	A first comparison of SLOPE and other LIGO burst event trigger generators. Classical and Quantum Gravity, 2006, 23, S733-S740.	4.0	3
143	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3
144	Recent results for the search of continuous waves with the LIGO and Virgo detectors. Classical and Quantum Gravity, 2012, 29, 124011.	4.0	2

#	Article	IF	CITATIONS
145	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	4.7	2
146	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
147	Binary neutron star inspiral, LIGO, and cosmology*. Annals of the New York Academy of Sciences, 1995, 759, 489-492.	3.8	1
148	Swift pointing and gravitational-wave bursts from gamma-ray burst events. Classical and Quantum Gravity, 2003, 20, S815-S820.	4.0	1
149	Preparing for LISA Data: The Testbed for LISA Analysis Project. AIP Conference Proceedings, 2006, , .	0.4	1
150	Interferometric detectors of gravitational waves on Earth: the next generations. Journal of Physics: Conference Series, 2008, 110, 062016.	0.4	1
151	Laser Interferometers, Gravitational waves and Echos from the Universe. Journal of Physics: Conference Series, 2010, 222, 012030.	0.4	1
152	A Bayesian search for gravitational waves from the Vela Pulsar in Virgo VSR2 data. Journal of Physics: Conference Series, 2012, 363, 012039.	0.4	1
153	The Analysis of ROTSE Images of Potential Counterparts to Gravitational Wave Events. Journal of Physics: Conference Series, 2012, 363, 012033.	0.4	1
154	Estimating transient detection efficiency in electromagnetic follow up searches. Journal of Physics: Conference Series, 2012, 363, 012036.	0.4	1
155	Data analysis challenges in transient gravitational-wave astronomy. , 2013, , .		1
156	The laser interferometer gravitational-wave observatory scientific data archive. Future Generation Computer Systems, 1999, 16, 123-134.	7.5	0
157	Removing instrumental artifacts: Suspension violin modes. AIP Conference Proceedings, 2000, , .	0.4	Ο
158	The resolving power of LISA: comparing techniques for binary analysis. AIP Conference Proceedings, 2006, , .	0.4	0
159	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	4.7	Ο
160	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
161	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	4.7	0
162	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	4.7	0

#	Article	IF	CITATIONS
163	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	0
164	Recent searches for gravitational-wave bursts associated with magnetar flares with LIGO, GEO, and Virgo. Journal of Physics: Conference Series, 2012, 363, 012026.	0.4	0
165	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	0
166	Cosmology and LIGO. , 1996, , 79-94.		0
167	Gravitational Wave Astronomy. Astrophysics and Space Science Library, 1997, , 95-110.	2.7	0