Rongxiang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electric field-assisted MnO2 nanomaterials for rapid capture and in-situ delivery of circulating tumour cells. Nanoscale, 2022, , .	5.6	0
2	Acoustic Droplet-Assisted Superhydrophilic–Superhydrophobic Microarray Platform for High-Throughput Screening of Patient-Derived Tumor Spheroids. ACS Applied Materials & Interfaces, 2021, 13, 23489-23501.	8.0	18
3	Tailoring the Energy Band Structure and Interfacial Morphology of the ETL via Controllable Nanocluster Size Achieves High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 48555-48568.	8.0	8
4	Highly sensitive microRNA detection by duplex-specific nuclease amplification triggered three-dimensional DNA machine. Analytical Methods, 2021, 13, 5694-5699.	2.7	2
5	Electrochemical Deposited Calcium Phosphate Nanomaterials with Microâ€Nano Interface for Capture and Nonâ€Invasive Release of Cancer Cells. Advanced Materials Interfaces, 2021, 8, 2101097.	3.7	2
6	δ sPbl ₃ Intermediate Phase Growth Assisted Sequential Deposition Boosts Stable and Highâ€Efficiency Triple Cation Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908343.	14.9	40
7	Electrophoretic Deposited Black Phosphorus on 3D Porous Current Collectors to Regulate Li Nucleation for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 51563-51572.	8.0	30
8	δâ€CsPbI ₃ Intermediate Phase Growth: δâ€CsPbI ₃ Intermediate Phase Growth Assiste Sequential Deposition Boosts Stable and Highâ€Efficiency Triple Cation Perovskite Solar Cells (Adv.) Tj ETQq0 0	d 0 r gୟ0 /Ov	verlock 10 Tf
9	Engineering of Droplet Charges in Microfluidic Chips. Advanced Engineering Materials, 2020, 22, 1901521.	3.5	3
10	An Integrated Optofluidic Platform Enabling Total Phosphorus On-Chip Digestion and Online Real-Time Detection. Micromachines, 2020, 11, 59.	2.9	13
11	A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells. Lab on A Chip, 2019, 19, 422-431.	6.0	25
12	TiO ₂ Nanorod Arrays with Mesoscopic Micro–Nano Interfaces for in Situ Regulation of Cell Morphology and Nucleus Deformation. ACS Applied Materials & Interfaces, 2018, 10, 66-74.	8.0	18
13	A Microwellâ€Assisted Multiaptamer Immunomagnetic Platform for Capture and Genetic Analysis of Circulating Tumor Cells. Advanced Healthcare Materials, 2018, 7, e1801231.	7.6	28
14	A micro-/nano-chip and quantum dots-based 3D cytosensor for quantitative analysis of circulating tumor cells. Journal of Nanobiotechnology, 2018, 16, 65.	9.1	34
15	Multi-walled carbon nanotubes induced a controllable TiO ₂ morphology transformation for high-rate and long-life lithium-ion batteries. RSC Advances, 2017, 7, 21988-21996.	3.6	13
16	Efficient Purification and Release of Circulating Tumor Cells by Synergistic Effect of Biomarker and SiO ₂ @Gelâ€Microbeadâ€Based Size Difference Amplification. Advanced Healthcare Materials, 2016, 5, 1554-1559.	7.6	44
17	Three-dimensional valve-based controllable PDMS nozzle for dynamic modulation of droplet generation. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	11
18	Artificial honeycomb-inspired TiO2 nanorod arrays with tunable nano/micro interfaces for improving poly(dimethylsiloxane) surface hydrophobicity. Journal of Materials Science, 2016, 51, 2935-2941.	3.7	4

RONGXIANG HE

#	Article	IF	CITATIONS
19	One-step electroplating 3D template with gradient height to enhance micromixing in microfluidic chips. Microfluidics and Nanofluidics, 2015, 19, 829-836.	2.2	3
20	PDMS micropillar-based microchip for efficient cancer cell capture. RSC Advances, 2015, 5, 52161-52166.	3.6	13
21	Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture. International Journal of Nanomedicine, 2014, 9, 2569.	6.7	16
22	Disk-like hydrogel bead-based immunofluorescence staining toward identification and observation of circulating tumor cells. Microfluidics and Nanofluidics, 2014, 16, 29-37.	2.2	21
23	Biocompatible TiO2 nanoparticle-based cell immunoassay for circulating tumor cells capture and identification from cancer patients. Biomedical Microdevices, 2013, 15, 617-626.	2.8	66
24	Electrospun TiO ₂ Nanofiberâ€Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients. Advanced Materials, 2012, 24, 2756-2760.	21.0	315
25	Assays: Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients (Adv. Mater. 20/2012). Advanced Materials, 2012, 24, 2755-2755.	21.0	3
26	Controllable fission of droplets and bubbles by pneumatic valve. Microfluidics and Nanofluidics, 2011, 10, 1343-1349.	2.2	8
27	Ultrafast nanotube based diffusiophoresis nanomotors. Applied Physics Letters, 2010, 96, .	3.3	16
28	Droplet electric separator microfluidic device for cell sorting. Applied Physics Letters, 2010, 96, .	3.3	78