
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel NADPH Thioredoxin Reductase, Localized in the Chloroplast, Which Deficiency Causes Hypersensitivity to Abiotic Stress in Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279, 43821-43827.	1.6	320
2	Rice NTRC Is a High-Efficiency Redox System for Chloroplast Protection against Oxidative Damage. Plant Cell, 2006, 18, 2356-2368.	3.1	288
3	NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9908-9913.	3.3	216
4	A Role for the DOF Transcription Factor BPBF in the Regulation of Gibberellin-Responsive Genes in Barley Aleurone. Plant Physiology, 2002, 130, 111-119.	2.3	187
5	Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany, 2010, 61, 4043-4054.	2.4	183
6	Identification and Expression Analysis of a Gene Encoding a Bacterial-Type Phosphoenolpyruvate Carboxylase from Arabidopsis and Rice. Plant Physiology, 2003, 132, 949-957.	2.3	123
7	Programmed cell death (PCD): an essential process of cereal seed development and germination. Frontiers in Plant Science, 2014, 5, 366.	1.7	119
8	NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12069-12074.	3.3	112
9	The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta, 2001, 213, 352-360.	1.6	104
10	Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta, 2003, 217, 392-399.	1.6	102
11	An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. Plant Journal, 2009, 57, 132-145.	2.8	102
12	The chloroplast NADPH thioredoxin reductase C, NTRC, controls nonâ€photochemical quenching of light energy and photosynthetic electron transport in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 804-822.	2.8	95
13	Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Molecular Biology, 1999, 40, 729-736.	2.0	87
14	Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223, 901-909.	1.6	82
15	NADPH Thioredoxin Reductase C Is Localized in Plastids of Photosynthetic and Nonphotosynthetic Tissues and Is Involved in Lateral Root Formation in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1534-1548.	3.1	82
16	Expression and Localization of Phosphoenolpyruvate Carboxylase in Developing and Germinating Wheat Grains1. Plant Physiology, 1998, 116, 1249-1258.	2.3	79
17	Overoxidation of 2-Cys Peroxiredoxin in Prokaryotes. Journal of Biological Chemistry, 2010, 285, 34485-34492.	1.6	76
18	NADPH Thioredoxin Reductase C Controls the Redox Status of Chloroplast 2-Cys Peroxiredoxins in Arabidopsis thaliana. Molecular Plant, 2009, 2, 298-307.	3.9	75

#	Article	IF	CITATIONS
19	Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiology, 2015, 169, pp.01122.2015.	2.3	75
20	Characterization of two thioredoxins h with predominant localization in the nucleus of aleurone and scutellum cells of germinating wheat seeds. Plant Molecular Biology, 2001, 46, 361-371.	2.0	72
21	A Gibberellin-induced Nuclease Is Localized in the Nucleus of Wheat Aleurone Cells Undergoing Programmed Cell Death. Journal of Biological Chemistry, 2004, 279, 11530-11536.	1.6	71
22	Type- <i>f</i> thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 1951-1964.	2.4	70
23	Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 2003, 216, 985-992.	1.6	69
24	2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark. Molecular Plant, 2018, 11, 1377-1388.	3.9	68
25	NTRC new ways of using NADPH in the chloroplast. Physiologia Plantarum, 2008, 133, 516-524.	2.6	63
26	A proposed reaction mechanism for rice NADPH thioredoxin reductase C, an enzyme with protein disulfide reductase activity. FEBS Letters, 2009, 583, 1399-1402.	1.3	63
27	NADPH Thioredoxin Reductase C Is Involved in Redox Regulation of the Mg-Chelatase I Subunit in Arabidopsis thaliana Chloroplasts. Molecular Plant, 2014, 7, 1252-1255.	3.9	62
28	NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development. Plant Physiology, 2017, 174, 1436-1448.	2.3	62
29	Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness. Frontiers in Plant Science, 2019, 10, 380.	1.7	61
30	Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells. Biochemical Journal, 2006, 397, 529-536.	1.7	57
31	The function of the NADPH thioredoxin reductase Câ€2 ys peroxiredoxin system in plastid redox regulation and signalling. FEBS Letters, 2012, 586, 2974-2980.	1.3	57
32	A gibberellin-regulated gene from wheat with sequence homology to cathepsin B of mammalian cells Plant Journal, 1992, 2, 937-948.	2.8	56
33	Characterization of the expression of a wheat cystatin gene during caryopsis development. Plant Molecular Biology, 2002, 50, 687-698.	2.0	56
34	Characterization of the Endoproteases Appearing during Wheat Grain Development. Plant Physiology, 1996, 112, 1211-1217.	2.3	53
35	Cloning of thioredoxin h reductase and characterization of the thioredoxin reductase–thioredoxin h system from wheat. Biochemical Journal, 2002, 367, 491-497.	1.7	53
36	Redox regulation of chloroplast metabolism. Plant Physiology, 2021, 186, 9-21.	2.3	51

#	Article	IF	CITATIONS
37	In Vivo and in Vitro Phosphorylation of the Phosphoenolpyruvate Carboxylase from Wheat Seeds during Germination. Plant Physiology, 1996, 111, 551-558.	2.3	49
38	Chloroplast dismantling in leaf senescence. Journal of Experimental Botany, 2021, 72, 5905-5918.	2.4	47
39	A germination-related gene encoding a serine carboxypeptidase is expressed during the differentiation of the vascular tissue in wheat grains and seedlings. Planta, 2002, 215, 727-734.	1.6	46
40	Patterns of Starchy Endosperm Acidification and Protease Gene Expression in Wheat Grains following Germination1. Plant Physiology, 1999, 119, 81-88.	2.3	44
41	Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis. Annals of Botany, 2015, 116, 695-702.	1.4	44
42	Short-term ammonium inhibition of nitrogen fixation in Azotobacter. Biochemical and Biophysical Research Communications, 1984, 123, 431-437.	1.0	41
43	Cloning and characterization of three thioredoxin h isoforms from wheat showing differential expression in seeds. Journal of Experimental Botany, 2006, 57, 2165-2172.	2.4	41
44	Import and processing of the precursor of the Rieske FeS protein of tobacco chloroplasts. Plant Molecular Biology, 1992, 20, 289-299.	2.0	40
45	Germinationâ€related genes encoding proteolytic enzymes are expressed in the nucellus of developing wheat grains. Plant Journal, 1998, 15, 569-574.	2.8	38
46	Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants. Planta, 2005, 222, 386-395.	1.6	38
47	A comparison between nuclear dismantling during plant and animal programmed cell death. Plant Science, 2012, 197, 114-121.	1.7	38
48	Pattern of endoproteolysis following wheat grain germination. Physiologia Plantarum, 1995, 95, 253-259.	2.6	37
49	Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume <i>Lotus japonicus</i> ÂÂÂ. Plant Physiology, 2011, 156, 1535-1547.	2.3	37
50	Tissue-specific expression of ATCYS-3A, a gene encoding the cytosolic isoform of O-acetylserine(thiol)lyase in Arabidopsis. Plant Journal, 1997, 11, 347-352.	2.8	36
51	Short-term nitrate (nitrite) inhibition of nitrogen fixation in Azotobacter chroococcum. Journal of Bacteriology, 1986, 165, 240-243.	1.0	35
52	PsTRXh1 and PsTRXh2 Are Both Pea h-Type Thioredoxins with Antagonistic Behavior in Redox Imbalances. Plant Physiology, 2007, 143, 300-311.	2.3	35
53	The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany, 2015, 66, 2957-2966.	2.4	34
54	Analysis of the gibberellin-responsive promoter of a cathepsin B-like gene from wheat. Plant Molecular Biology, 1992, 20, 849-856.	2.0	33

#	Article	IF	CITATIONS
55	A Comparative Analysis of the NADPH Thioredoxin Reductase C-2-Cys Peroxiredoxin System from Plants and Cyanobacteria A. Plant Physiology, 2011, 155, 1806-1816.	2.3	33
56	Isolation and analysis of the soybean SGA2 gene (cDNA), encoding a new member of the plant G-protein family of signal transducers. Plant Molecular Biology, 1996, 32, 1227-1234.	2.0	32
57	Evidence for a Slow-Turnover Form of the Ca2+-Independent Phosphoenolpyruvate Carboxylase Kinase in the Aleurone-Endosperm Tissue of Germinating Barley Seeds1. Plant Physiology, 1999, 119, 511-520.	2.3	31
58	Electron Transfer Pathways and Dynamics of Chloroplast NADPH-dependent Thioredoxin Reductase C (NTRC). Journal of Biological Chemistry, 2012, 287, 33865-33872.	1.6	31
59	Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues. Journal of Experimental Botany, 2008, 59, 1267-1277.	2.4	30
60	Nucleotide sequence of wild-type and mutantnifR4 (ntrA)genes ofRhodobacter capsulatur: identification of an essential glytine residue. Nucleic Acids Research, 1989, 17, 5377-5377.	6.5	29
61	An intermolecular disulfideâ€based light switch for chloroplast <i>psbD</i> gene expression in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2012, 72, 378-389.	2.8	29
62	Thiol-based redox homeostasis and signaling. Frontiers in Plant Science, 2014, 5, 266.	1.7	29
63	Molecular and regulatory properties of glutamine synthetase from the phototrophic bacterium Rhodopseudomonas capsulata E1F1. Journal of Bacteriology, 1985, 162, 804-809.	1.0	29
64	Ammonia assimilation pathways in Rhodopseudomonas capsulata E1F1. Archives of Microbiology, 1983, 136, 147-151.	1.0	28
65	The scutellum of germinated wheat grains undergoes programmed cell death: identification of an acidic nuclease involved in nucleus dismantling. Journal of Experimental Botany, 2012, 63, 5475-5485.	2.4	28
66	Insights into the function of NADPH thioredoxin reductase C (NTRC) based on identification of NTRC-interacting proteins in vivo. Journal of Experimental Botany, 2019, 70, 5787-5798.	2.4	28
67	Chloroplast Lipids Metabolism and Function. A Redox Perspective. Frontiers in Plant Science, 2021, 12, 712022.	1.7	27
68	Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. Plant, Cell and Environment, 2019, 42, 2627-2644.	2.8	26
69	Molecular recognition in the interaction of chloroplast 2â€Cys peroxiredoxin with NADPHâ€thioredoxin reductase C (NTRC) and thioredoxin <i>x</i> . FEBS Letters, 2014, 588, 4342-4347.	1.3	25
70	Redoxâ€control of chlorophyll biosynthesis mainly depends on thioredoxins. FEBS Letters, 2018, 592, 3111-3115.	1.3	24
71	Isolation and characterisation of a wheat phosphoenolpyruvate carboxylase gene. Modelling of the encoded protein. Plant Science, 2002, 162, 233-238.	1.7	23
72	The Quaternary Structure of NADPH Thioredoxin Reductase C Is Redox-Sensitive. Molecular Plant, 2009, 2, 457-467.	3.9	23

#	Article	IF	CITATIONS
73	Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide. Frontiers in Plant Science, 2013, 4, 310.	1.7	21
74	The NADPH-Dependent Thioredoxin Reductase C–2-Cys Peroxiredoxin Redox System Modulates the Activity of Thioredoxin x in Arabidopsis Chloroplasts. Plant and Cell Physiology, 2018, 59, 2155-2164.	1.5	21
75	A hydrogen peroxide detoxification system in the nucleus of wheat seed cells. Plant Signaling and Behavior, 2009, 4, 23-25.	1.2	20
76	Purification and properties of an extracellular invertase from Azotobacter chroococcum. Enzyme and Microbial Technology, 1991, 13, 267-271.	1.6	18
77	NTRC Plays a Crucial Role in Starch Metabolism, Redox Balance, and Tomato Fruit Growth. Plant Physiology, 2019, 181, 976-992.	2.3	18
78	Amyl expression during wheat seed germination. Plant Science, 1995, 106, 207-213.	1.7	17
79	Gibberellin-regulated expression of neutral and vacuolar invertase genes in petioles of sugar beet plants. Plant Science, 2007, 172, 839-846.	1.7	17
80	Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds. Phytochemistry, 2012, 79, 27-38.	1.4	16
81	Understanding plant responses to stress conditions: redox-based strategies. Journal of Experimental Botany, 2021, 72, 5785-5788.	2.4	15
82	An event of alternative splicing affects the expression of the NTRC gene, encoding NADPH-thioredoxin reductase C, in seed plants. Plant Science, 2017, 258, 21-28.	1.7	14
83	Characterization of <i>CYCLOPHILLIN38</i> shows that a photosynthesis-derived systemic signal controls lateral root emergence. Plant Physiology, 2021, 185, 503-518.	2.3	14
84	Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 1177-1179.	1.2	12
85	A chloroplast redox relay adapts plastid metabolism to light and affects cytosolic protein quality control. Plant Physiology, 2021, 187, 88-102.	2.3	12
86	Short-term ammonium inhibition of nitrate uptake by Azotobacter chroococcum. Archives of Microbiology, 1986, 144, 187-190.	1.0	11
87	Production of exocellular polysaccharide by azotobacter chroococcwn. Applied Biochemistry and Biotechnology, 1991, 30, 273-284.	1.4	11
88	Posttranslational regulation of nitrogenase activity by fixed nitrogen in Azotobacter chroococcum. Biochimica Et Biophysica Acta - General Subjects, 1996, 1291, 67-74.	1.1	11
89	The Azotobacter chroococcum nitrate permease is a multicomponent system. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1141, 75-80.	0.5	9
90	Exploring the Functional Relationship between y-Type Thioredoxins and 2-Cys Peroxiredoxins in Arabidopsis Chloroplasts. Antioxidants, 2020, 9, 1072.	2.2	9

#	Article	IF	CITATIONS
91	Current Knowledge on Mechanisms Preventing Photosynthesis Redox Imbalance in Plants. Antioxidants, 2021, 10, 1789.	2.2	9
92	Effect of nitrogen starvation on ammonium-inhibition of nitrogenase activity in Azotobacter chroococcum. Archives of Microbiology, 1988, 149, 481-484.	1.0	8
93	Cloning, biochemical characterisation, tissue localisation and possible post-translational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds. Planta, 2010, 232, 845-859.	1.6	8
94	Photosynthetic activity of cotyledons is critical during post-germinative growth and seedling establishment. Plant Signaling and Behavior, 2017, 12, e1347244.	1.2	7
95	Isolation and characterization of an Azotobacter chroococcum mutant deficient in nitrate transport. FEMS Microbiology Letters, 1990, 67, 211-214.	0.7	6
96	Comparative Analysis of Cyanobacterial and Plant Peroxiredoxins and Their Electron Donors. Methods in Enzymology, 2013, 527, 257-273.	0.4	6
97	Cyanate is transported by the nitrate permease inAzotobacter chroococcum. FEMS Microbiology Letters, 1996, 137, 91-94.	0.7	5
98	Pattern of endoproteolysis following wheat grain germination. Physiologia Plantarum, 1995, 95, 253-259.	2.6	5
99	Role of Mn(II) as regulator of nitrate assimilation in Azotobacter chroococcum. Biochimica Et Biophysica Acta - General Subjects, 1989, 993, 36-41.	1.1	4
100	Regulation of Azotobacter chroococcum invertase. Archives of Microbiology, 1991, 155, 309-311.	1.0	3
101	Chapter 14 Oxidative Stress and Thiol-Based Antioxidants in Cereal Seeds. Advances in Botanical Research, 2009, 52, 437-460.	0.5	3
102	Nuclear Dismantling Events: Crucial Steps During the Execution of Plant Programmed Cell Death. , 2015, , 163-189.		3
103	Nitrite uptake in Azotobacter chroococcum. Archives of Microbiology, 1992, 157, 546-548.	1.0	3
104	Effect of divalent cations on the short-term NH 4 + inhibition of nitrogen fixation in Azotobacter chroococcum. Archives of Microbiology, 1990, 154, 313-316.	1.0	2
105	A sensor protein involved in induction of nitrate assimilation inAzotobacter chroococcum. FEBS Letters, 1996, 393, 7-12.	1.3	2
106	Markers of Developmentally Regulated Programmed Cell Death and Their Analysis in Cereal Seeds. Methods in Molecular Biology, 2018, 1743, 21-37.	0.4	1
107	On the Elaborate Network of Thioredoxins in Higher Plants. Progress in Botany Fortschritte Der Botanik, 2018, , 223-251.	0.1	1
108	Gibberellin regulation of aleurone cell death in germinating wheat seeds , 2003, , 251-257.		0

7