
Ravi K Birla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4279493/publications.pdf Version: 2024-02-01

ΡΛΛ/Ι Κ ΒΙΡΙΛ

#	Article	IF	CITATIONS
1	Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 153-163.	2.7	43
2	3D bioprinting and its potential impact on cardiac failure treatment: An industry perspective. APL Bioengineering, 2020, 4, 010903.	6.2	41
3	Tissue-engineered heart valve prostheses: †̃state of the heart'. Regenerative Medicine, 2008, 3, 399-419.	1.7	26
4	Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs. Cardiovascular Engineering and Technology, 2015, 6, 533-545.	1.6	20
5	Optimizing cell seeding and retention in a threeâ€dimensional bioengineered cardiac ventricle: The twoâ€stage cellularization model. Biotechnology and Bioengineering, 2016, 113, 2275-2285.	3.3	18
6	3D Bioprinting the Cardiac Purkinje System Using Human Adipogenic Mesenchymal Stem Cell Derived Purkinje Cells. Cardiovascular Engineering and Technology, 2020, 11, 587-604.	1.6	18
7	A Highly Conductive 3D Cardiac Patch Fabricated Using Cardiac Myocytes Reprogrammed from Human Adipogenic Mesenchymal Stem Cells. Cardiovascular Engineering and Technology, 2020, 11, 205-218.	1.6	16
8	Effect of thyroid hormone on the contractility of self-organized heart muscle. In Vitro Cellular and Developmental Biology - Animal, 2008, 44, 204-213.	1.5	15
9	Establishing the Framework for Fabrication of a Bioartificial Heart. ASAIO Journal, 2015, 61, 429-436.	1.6	15
10	Establishing the Framework for Tissue Engineered Heart Pumps. Cardiovascular Engineering and Technology, 2015, 6, 220-229.	1.6	13
11	The design and fabrication of a threeâ€dimensional bioengineered open ventricle. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2206-2217.	3.4	13
12	Variable optimization for the formation of three-dimensional self-organized heart muscle. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 592-601.	1.5	12
13	The Bioengineered Cardiac Left Ventricle. ASAIO Journal, 2018, 64, 56-62.	1.6	12
14	Bioengineering Cardiac Tissue Constructs With Adult Rat Cardiomyocytes. ASAIO Journal, 2018, 64, e105-e114.	1.6	8
15	A methodological nine-step process to bioengineer heart muscle tissue. Tissue and Cell, 2020, 67, 101425.	2.2	6
16	Current State of the Art in Ventricle Tissue Engineering. Frontiers in Cardiovascular Medicine, 2020, 7, 591581.	2.4	5
17	Tissue engineering solutions to replace contractile function during pediatric heart surgery. Tissue and Cell, 2020, 67, 101452.	2.2	3
18	16-Channel Flexible System to Measure Electrophysiological Properties of Bioengineered Hearts. Cardiovascular Engineering and Technology, 2018, 9, 94-104.	1.6	0