Tehshik P Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4279489/publications.pdf

Version: 2024-02-01

102 papers 19,675 citations

28190 55 h-index 24179 110 g-index

168 all docs 168 docs citations

168 times ranked 12106 citing authors

#	Article	IF	CITATIONS
1	Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chemical Reviews, 2022, 122, 1654-1716.	23.0	179
2	Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(ii) carboxylates. Nature Chemistry, 2022, 14, 94-99.	6.6	101
3	Cooperative Stereoinduction in Asymmetric Photocatalysis. Journal of the American Chemical Society, 2022, 144, 4206-4213.	6.6	24
4	Olefinâ€Supported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angewandte Chemie - International Edition, 2021, 60, 3989-3993.	7.2	14
5	Olefinâ€Supported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angewandte Chemie, 2021, 133, 4035-4039.	1.6	2
6	Oxidase reactions in photoredox catalysis. Chemical Society Reviews, 2021, 50, 2954-2967.	18.7	80
7	Construction of Complex Cyclobutane Building Blocks by Photosensitized [2 + 2] Cycloaddition of Vinyl Boronate Esters. Organic Letters, 2021, 23, 3496-3501.	2.4	29
8	Copper-Mediated Radical–Polar Crossover Enables Photocatalytic Oxidative Functionalization of Sterically Bulky Alkenes. Journal of the American Chemical Society, 2021, 143, 6065-6070.	6.6	37
9	Enantioselective Synthesis of \hat{I}^3 -Oxycarbonyl Motifs by Conjugate Addition of Photogenerated \hat{I} ±-Alkoxy Radicals. Organic Letters, 2021, 23, 5703-5708.	2.4	9
10	Chiral BrÃ,nsted acid-controlled intermolecular asymmetric [2 + 2] photocycloadditions. Nature Communications, 2021, 12, 5735.	5.8	32
11	Photons at Play: Photocatalysis in Sustainable Chemistry. A Joint Virtual Special Issue by ACS Catalysis and ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 13125-13127.	3.2	1
12	Site‧elective Alkoxylation of Benzylic Câ^'H Bonds by Photoredox Catalysis. Angewandte Chemie, 2020, 132, 203-208.	1.6	15
13	Siteâ€Selective Alkoxylation of Benzylic Câ^'H Bonds by Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 197-202.	7.2	97
14	BrÃ,nsted acid catalysis of photosensitized cycloadditions. Chemical Science, 2020, 11, 856-861.	3.7	45
15	Organic Chemistry: A Call to Action for Diversity and Inclusion. Journal of Organic Chemistry, 2020, 85, 10287-10292.	1.7	18
16	Organic Chemistry: A Call to Action for Diversity and Inclusion. Organic Letters, 2020, 22, 6223-6228.	2.4	8
17	Divergent Photocatalytic Reactions of \hat{l}_{\pm} -Ketoesters under Triplet Sensitization and Photoredox Conditions. Organic Letters, 2020, 22, 6520-6525.	2.4	48
18	Organic Chemistry: A Call to Action for Diversity and Inclusion. ACS Central Science, 2020, 6, 1241-1247.	5 . 3	1

#	Article	IF	Citations
19	Organic Chemistry: A Call to Action for Diversity and Inclusion. Organometallics, 2020, 39, 2931-2936.	1.1	3
20	LEDâ€NMR Monitoring of an Enantioselective Catalytic [2+2] Photocycloaddition. ChemPhotoChem, 2020, 4, 685-690.	1.5	21
21	Excellence <i>versus</i> Diversity? Not an Either/Or Choice. ACS Catalysis, 2020, 10, 7310-7311.	5.5	4
22	Enantioselective Intermolecular Excited-State Photoreactions Using a Chiral Ir Triplet Sensitizer: Separating Association from Energy Transfer in Asymmetric Photocatalysis. Journal of the American Chemical Society, 2019, 141, 13625-13634.	6.6	111
23	Stereocontrolled Photochemical Synthesis. ChemPhotoChem, 2019, 3, 1201-1202.	1.5	5
24	Enantioselective [2+2] Cycloadditions of Cinnamate Esters: Generalizing Lewis Acid Catalysis of Triplet Energy Transfer. Journal of the American Chemical Society, 2019, 141, 9543-9547.	6.6	129
25	Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 6385-6391.	6.6	88
26	A Redox Auxiliary Strategy for Pyrrolidine Synthesis via Photocatalytic [3+2] Cycloaddition. Asian Journal of Organic Chemistry, 2019, 8, 978-985.	1.3	16
27	16 Photocatalytic Cycloadditions. , 2019, , .		1
28	Tandem copper and photoredox catalysis in photocatalytic alkene difunctionalization reactions. Beilstein Journal of Organic Chemistry, 2019, 15, 351-356.	1.3	13
29	A General Protocol for Radical Anion [3+2] Cycloaddition Enabled by Tandem Lewis Acid Photoredox Catalysis. Synthesis, 2018, 50, 539-547.	1.2	27
30	Photocatalytic Oxyamination of Alkenes: Copper(II) Salts as Terminal Oxidants in Photoredox Catalysis. Organic Letters, 2018, 20, 7345-7350.	2.4	53
31	Asymmetric catalysis of triplet-state photoreactions. Photochemistry, 2018, , 432-448.	0.2	20
32	Titanium dioxide visible light photocatalysis: surface association enables photocatalysis with visible light irradiation. Chemical Communications, 2017, 53, 4335-4338.	2.2	88
33	Radical Cation Cycloadditions Using Cleavable Redox Auxiliaries. Organic Letters, 2017, 19, 368-371.	2.4	44
34	Enantioselective Excited-State Photoreactions Controlled by a Chiral Hydrogen-Bonding Iridium Sensitizer. Journal of the American Chemical Society, 2017, 139, 17186-17192.	6.6	153
35	Enantioselective Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Catalyzed Triplet Sensitization. Angewandte Chemie - International Edition, 2017, 56, 11891-11895.	7.2	124
36	Enantioselective Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Catalyzed Triplet Sensitization. Angewandte Chemie, 2017, 129, 12053-12057.	1.6	43

#	Article	IF	Citations
37	Photocatalytic Indole Diels–Alder Cycloadditions Mediated by Heterogeneous Platinum-Modified Titanium Dioxide. ACS Catalysis, 2017, 7, 6440-6444.	5.5	50
38	Strategies in asymmetric catalysis. Beilstein Journal of Organic Chemistry, 2017, 13, 63-64.	1.3	5
39	A Chiral Metal Photocatalyst Architecture for Highly Enantioselective Photoreactions. Angewandte Chemie - International Edition, 2016, 55, 2304-2306.	7.2	44
40	Hoch enantioselektive Photoreaktionen durch Photokatalysatoren mit chiralen Metallzentren. Angewandte Chemie, 2016, 128, 2348-2350.	1.6	4
41	Enantioselective photochemistry through Lewis acid–catalyzed triplet energy transfer. Science, 2016, 354, 1391-1395.	6.0	311
42	Dual Catalysis Strategies in Photochemical Synthesis. Chemical Reviews, 2016, 116, 10035-10074.	23.0	2,059
43	Editorial for the Special Issue on Photocatalysis. Journal of Organic Chemistry, 2016, 81, 6895-6897.	1.7	21
44	Photochemical Stereocontrol Using Tandem Photoredox–Chiral Lewis Acid Catalysis. Accounts of Chemical Research, 2016, 49, 2307-2315.	7.6	271
45	Enabling Chemical Synthesis with Visible Light. Accounts of Chemical Research, 2016, 49, 2059-2060.	7.6	45
46	Spinâ€Selective Generation of Triplet Nitrenes: Olefin Aziridination through Visibleâ€Light Photosensitization of Azidoformates. Angewandte Chemie, 2016, 128, 2279-2282.	1.6	30
47	Spinâ€Selective Generation of Triplet Nitrenes: Olefin Aziridination through Visibleâ€Light Photosensitization of Azidoformates. Angewandte Chemie - International Edition, 2016, 55, 2239-2242.	7.2	106
48	Enantioselective Photocatalytic $[3+2]$ Cycloadditions of Aryl Cyclopropyl Ketones. Journal of the American Chemical Society, 2016, 138, 4722-4725.	6.6	178
49	An improved procedure for the preparation of Ru(bpz) ₃ (PF ₆) ₂ via a high-yielding synthesis of 2,2'-bipyrazine. Beilstein Journal of Organic Chemistry, 2015, 11, 61-65.	1.3	22
50	Enantioselective Conjugate Additions of \hat{l}_{\pm} -Amino Radicals via Cooperative Photoredox and Lewis Acid Catalysis. Journal of the American Chemical Society, 2015, 137, 2452-2455.	6.6	259
51	Characterizing chain processes in visible light photoredox catalysis. Chemical Science, 2015, 6, 5426-5434.	3.7	791
52	Visible‣ight Sensitization of Vinyl Azides by Transitionâ€Metal Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, 793-797.	7.2	201
53	Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 2014, 343, 1239176.	6.0	2,043
54	A Dual-Catalysis Approach to Enantioselective [2 + 2] Photocycloadditions Using Visible Light. Science, 2014, 344, 392-396.	6.0	495

#	Article	IF	CITATIONS
55	Advances in the Chemistry of Oxaziridines. Chemical Reviews, 2014, 114, 8016-8036.	23.0	133
56	Redox Mediators in Visible Light Photocatalysis: Photocatalytic Radical Thiol–Ene Additions. Journal of Organic Chemistry, 2014, 79, 1427-1436.	1.7	189
57	Shape control in reactions with light. Nature, 2014, 515, 45-46.	13.7	33
58	Opportunities in Photocatalytic Synthesis. Advanced Synthesis and Catalysis, 2014, 356, 2739-2739.	2.1	22
59	Iron-catalyzed kinetic resolution of N-sulfonyl oxaziridines. Chemical Science, 2014, 5, 3524.	3.7	23
60	Photocatalytic Synthesis of Dihydrobenzofurans by Oxidative [3+2] Cycloaddition of Phenols. Angewandte Chemie - International Edition, 2014, 53, 11056-11059.	7.2	107
61	[2+2] Cycloaddition of 1,3â€Dienes by Visible Light Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, 8991-8994.	7.2	146
62	[3+2] Photooxygenation of aryl cyclopropanes via visible light photocatalysis. Tetrahedron, 2014, 70, 4270-4278.	1.0	46
63	Transition Metal Photoredox Catalysis of Radical Thiol-Ene Reactions. Journal of Organic Chemistry, 2013, 78, 2046-2050.	1.7	217
64	Visible Light Photocatalysis: The Development of Photocatalytic Radical Ion Cycloadditions. ACS Catalysis, 2013, 3, 895-902.	5 . 5	258
65	Brønsted Acid Cocatalysts in Photocatalytic Radical Addition of α-Amino C–H Bonds across Michael Acceptors. Journal of Organic Chemistry, 2013, 78, 4107-4114.	1.7	173
66	Reductive Cyclizations of Nitroarenes to Hydroxamic Acids by Visible Light Photoredox Catalysis. Synthesis, 2013, 45, 2699-2705.	1.2	13
67	Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Physical Chemistry Chemical Physics, 2012, 14, 7276.	1.3	86
68	Photocatalytic $[2 + 2]$ Cycloadditions of Enones with Cleavable Redox Auxiliaries. Organic Letters, 2012, 14, 1110-1113.	2.4	115
69	Endoperoxide Synthesis by Photocatalytic Aerobic $[2 + 2 + 2]$ Cycloadditions. Organic Letters, 2012, 14, 1640-1643.	2.4	98
70	Visible Light Photocatalysis of [2+2] Styrene Cycloadditions by Energy Transfer. Angewandte Chemie - International Edition, 2012, 51, 10329-10332.	7.2	337
71	Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chemical Science, 2012, 3, 2807.	3.7	169
72	Iron Catalyzed Asymmetric Oxyamination of Olefins. Journal of the American Chemical Society, 2012, 134, 12370-12373.	6.6	161

#	Article	IF	CITATIONS
73	Accessing the Synthetic Chemistry of Radical Ions. European Journal of Organic Chemistry, 2012, 2012, 3359-3372.	1.2	189
74	Visible light photocatalysis of intramolecular radical cation Diels–Alder cycloadditions. Tetrahedron Letters, 2012, 53, 3073-3076.	0.7	56
75	Hydroxycarboxylic Acid-Derived Organosulfates: Synthesis, Stability, and Quantification in Ambient Aerosol. Environmental Science & Environmental Scie	4.6	100
76	Reply to Comment on "Hydroxycarboxylic Acid-Derived Organosulfates: Synthesis, Stability and Quantification in Ambient Aerosol― Environmental Science & Environmental Science & 2011, 45, 9111-9111.	4.6	1
77	Photocatalytic reductive cyclizations of enones: Divergent reactivity of photogenerated radical and radical anion intermediates. Chemical Science, 2011, 2, 2115.	3.7	167
78	[3+2] Cycloadditions of Aryl Cyclopropyl Ketones by Visible Light Photocatalysis. Journal of the American Chemical Society, 2011, 133, 1162-1164.	6.6	286
79	Radical Cation Diels–Alder Cycloadditions by Visible Light Photocatalysis. Journal of the American Chemical Society, 2011, 133, 19350-19353.	6.6	341
80	Visible light photocatalysis of radical anion hetero-Diels–Alder cycloadditions. Tetrahedron, 2011, 67, 4442-4448.	1.0	114
81	Carbonyl Imines from Oxaziridines: Generation and Cycloaddition of NOC Dipoles. Angewandte Chemie - International Edition, 2010, 49, 930-934.	7.2	42
82	Oxaziridineâ€Mediated Oxyamination of Indoles: An Approach to 3â€Aminoindoles and Enantiomerically Enriched 3â€Aminopyrroloindolines. Angewandte Chemie - International Edition, 2010, 49, 9153-9157.	7.2	114
83	N-Nosyl oxaziridines as terminal oxidants in copper(II)-catalyzed olefin oxyaminations. Tetrahedron Letters, 2010, 51, 5223-5225.	0.7	19
84	Visible light photocatalysis as a greener approach to photochemical synthesis. Nature Chemistry, 2010, 2, 527-532.	6.6	2,244
85	[2+2] Cycloadditions by Oxidative Visible Light Photocatalysis. Journal of the American Chemical Society, 2010, 132, 8572-8574.	6.6	380
86	Iron-Catalyzed Aminohydroxylation of Olefins. Journal of the American Chemical Society, 2010, 132, 4570-4571.	6.6	163
87	Oxaziridine-mediated enantioselective aminohydroxylation of styrenes catalyzed by copper(II) bis(oxazoline) complexes. Tetrahedron, 2009, 65, 5118-5124.	1.0	87
88	Response to "Can Reaction Mechanisms Be Proven?― Journal of Chemical Education, 2009, 86, 556.	1.1	6
89	Oxaziridine-Mediated Intramolecular Amination of sp ³ -Hybridized Câ°'H Bonds. Journal of the American Chemical Society, 2009, 131, 12560-12561.	6.6	60
90	Crossed Intermolecular [2+2] Cycloadditions of Acyclic Enones via Visible Light Photocatalysis. Journal of the American Chemical Society, 2009, 131, 14604-14605.	6.6	412

#	Article	IF	CITATIONS
91	Anionic Halocuprate(II) Complexes as Catalysts for the Oxaziridine-Mediated Aminohydroxylation of Olefins. Journal of Organic Chemistry, 2009, 74, 5545-5552.	1.7	80
92	Cycloadditions of <i>N</i> -Sulfonyl Nitrones Generated by Lewis Acid Catalyzed Rearrangement of Oxaziridines. Journal of the American Chemical Society, 2008, 130, 2920-2921.	6.6	61
93	Efficient Visible Light Photocatalysis of [2+2] Enone Cycloadditions. Journal of the American Chemical Society, 2008, 130, 12886-12887.	6.6	946
94	Activation of $\langle i \rangle N \langle i \rangle$ -Sulfonyl Oxaziridines Using Copper(II) Catalysts: Aminohydroxylations of Styrenes and 1,3-Dienes. Journal of the American Chemical Society, 2008, 130, 6610-6615.	6.6	138
95	Copper(II)-Catalyzed Aminohydroxylation of Olefins. Journal of the American Chemical Society, 2007, 129, 1866-1867.	6.6	164
96	Highly Enantioselective Thiourea-Catalyzed Nitro-Mannich Reactions. Angewandte Chemie - International Edition, 2005, 44, 466-468.	7.2	293
97	Highly Enantioselective Thiourea-Catalyzed Nitro-Mannich Reactions. Angewandte Chemie - International Edition, 2005, 44, 7327-7327.	7.2	3
98	Highly Enantioselective Thiourea-Catalyzed Nitro-Mannich Reactions ChemInform, 2005, 36, no.	0.1	0
99	Privileged Chiral Catalysts. Science, 2003, 299, 1691-1693.	6.0	1,262
100	Enantioselective Claisen Rearrangements:Â Development of a First Generation Asymmetric Acyl-Claisen Reaction. Journal of the American Chemical Society, 2001, 123, 2911-2912.	6.6	98
101	Development of a New Lewis Acid-Catalyzed Claisen Rearrangement. Journal of the American Chemical Society, 1999, 121, 9726-9727.	6.6	85
102	Formation of (Z) dialkylboron enolates from enolsilanes: Stereoconvergent transmetallation and diastereoselective aldol reactions. Tetrahedron Letters, 1995, 36, 9245-9248.	0.7	32