
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4279138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PHANCS–MUSE: The Hâ€⁻II region luminosity function of local star-forming galaxies. Astronomy and Astrophysics, 2022, 658, A188.	2.1	34
2	A 2–3 mm high-resolution molecular line survey towards the centre of the nearby spiral galaxy NGC 6946. Astronomy and Astrophysics, 2022, 659, A173.	2.1	14
3	Planetary nebula luminosity function distances for 19 galaxies observed by PHANGS–MUSE. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6087-6109.	1.6	15
4	The PHANGS-MUSE survey. Astronomy and Astrophysics, 2022, 659, A191.	2.1	96
5	A CO isotopologue Line Atlas within the Whirlpool galaxy Survey (CLAWS). Astronomy and Astrophysics, 2022, 662, A89.	2.1	9
6	The PHANGS-HST Survey: Physics at High Angular Resolution in Nearby Galaxies with the Hubble Space Telescope. Astrophysical Journal, Supplement Series, 2022, 258, 10.	3.0	58
7	A tale of two DIGs: The relative role of Hâ€II regions and low-mass hot evolved stars in powering the diffuse ionised gas (DIG) in PHANGS–MUSE galaxies. Astronomy and Astrophysics, 2022, 659, A26.	2.1	51
8	Molecular Gas Properties and CO-to-H ₂ Conversion Factors in the Central Kiloparsec of NGC 3351. Astrophysical Journal, 2022, 925, 72.	1.6	20
9	Molecular Gas Excitation of the Massive Dusty Starburst CRLE and the Main-sequence Galaxy HZ10 at z = 5.7 in the COSMOS Field. Astrophysical Journal, 2022, 925, 174.	1.6	2
10	A ³ COSMOS: A census on the molecular gas mass and extent of main-sequence galaxies across cosmic time. Astronomy and Astrophysics, 2022, 660, A142.	2.1	19
11	The column densities of molecular gas across cosmic time: bridging observations and simulations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4736-4751.	1.6	6
12	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. II. Resolved Distributions of CO and Hα Emission for 49 PHANGS Galaxies. Astrophysical Journal, 2022, 927, 9.	1.6	19
13	Probing star formation and ISM properties using galaxy disk inclination. Astronomy and Astrophysics, 2022, 662, A26.	2.1	6
14	Low-J CO Line Ratios from Single-dish CO Mapping Surveys and PHANGS-ALMA. Astrophysical Journal, 2022, 927, 149.	1.6	46
15	The Kiloparsec-scale Neutral Atomic Carbon Outflow in the Nearby Type 2 Seyfert Galaxy NGC 1068: Evidence for Negative ACN Feedback. Astrophysical Journal Letters, 2022, 927, L32.	3.0	12
16	Linking stellar populations to H II regions across nearby galaxies. Astronomy and Astrophysics, 2022, 662, L6.	2.1	11
17	Molecular Cloud Populations in the Context of Their Host Galaxy Environments: A Multiwavelength Perspective. Astronomical Journal, 2022, 164, 43.	1.9	31
18	Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3621-3639.	1.6	106

#	Article	IF	CITATIONS
19	Star cluster classification in the PHANGS– <i>HST</i> survey: Comparison between human and machine learning approaches. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5294-5317.	1.6	28
20	CO Excitation, Molecular Gas Density, and Interstellar Radiation Field in Local and High-redshift Galaxies. Astrophysical Journal, 2021, 909, 56.	1.6	28
21	The non-linear infrared-radio correlation of low- <i>z</i> galaxies: implications for redshift evolution, a new radio SFR recipe, and how to minimize selection bias. Monthly Notices of the Royal Astronomical Society, 2021, 504, 118-145.	1.6	28
22	On the duration of the embedded phase of star formation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 487-509.	1.6	61
23	New constraints on the 12CO(2–1)/(1–0) line ratio across nearby disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3221-3245.	1.6	71
24	Applying the Tremaine–Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics. Astronomical Journal, 2021, 161, 185.	1.9	23
25	FR-type radio sources at 3 GHz VLA-COSMOS: Relation to physical properties and large-scale environment. Astronomy and Astrophysics, 2021, 648, A102.	2.1	16
26	Three Lyman- <i>α</i> -emitting filaments converging to a massive galaxy group at <i>z</i> = 2.91: discussing the case for cold gas infall. Astronomy and Astrophysics, 2021, 649, A78.	2.1	41
27	Bringing high spatial resolution to the far-infrared. Experimental Astronomy, 2021, 51, 661-697.	1.6	9
28	Star formation scaling relations at â^¼100 pc from PHANGS: Impact of completeness and spatial scale. Astronomy and Astrophysics, 2021, 650, A134.	2.1	50
29	The Organization of Cloud-scale Gas Density Structure: High-resolution CO versus 3.6 μm Brightness Contrasts in Nearby Galaxies. Astrophysical Journal, 2021, 913, 113.	1.6	10
30	Dense molecular gas properties on 100Âpc scales across the disc of NGCÂ3627. Monthly Notices of the Royal Astronomical Society, 2021, 506, 963-988.	1.6	24
31	PHANGS–ALMA Data Processing and Pipeline. Astrophysical Journal, Supplement Series, 2021, 255, 19.	3.0	79
32	Stellar structures, molecular gas, and star formation across the PHANGS sample of nearby galaxies. Astronomy and Astrophysics, 2021, 656, A133.	2.1	53
33	Frequency and nature of central molecular outflows in nearby star-forming disk galaxies. Astronomy and Astrophysics, 2021, 653, A172.	2.1	19
34	ALMA resolves giant molecular clouds in a tidal dwarf galaxy. Astronomy and Astrophysics, 2021, 645, A97.	2.1	10
35	PHANGS– <i>HST</i> : star cluster spectral energy distribution fitting with <scp>cigale</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 502, 1366-1385.	1.6	33
36	Giant molecular cloud catalogues for PHANCS-ALMA: methods and initial results. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1218-1245.	1.6	75

#	Article	IF	CITATIONS
37	The 2D metallicity distribution and mixing scales of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1303-1322.	1.6	22
38	Comparing the pre-SNe feedback and environmental pressures for 6000 H <scp>ii</scp> regions across 19 nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5362-5389.	1.6	27
39	Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 272-288.	1.6	65
40	PHANGS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies. Astrophysical Journal, Supplement Series, 2021, 257, 43.	3.0	161
41	The role of thermal and non-thermal processes in the ISM of the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2021, 510, 11-31.	1.6	5
42	The lifecycle of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2872-2909.	1.6	178
43	Measuring the mixing scale of the ISM within nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 193-209.	1.6	44
44	Volumetric star formation prescriptions in vertically resolved edge-on galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4558-4575.	1.6	9
45	The 300-pc scale ALMA view of [C <scp>i</scp>] 3 <i>P</i> 1–3 <i>P</i> 0, COÂ <i>J</i> = 1–0, and 609- <i: dust continuum in a luminous infrared galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3591-3600.</i: 	>μm 1.6	14
46	A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. II. The Bottleneck to Collapse Set by Cloud–Environment Decoupling. Astrophysical Journal, 2020, 892, 73.	1.6	27
47	ALMA Reveals the Molecular Gas Properties of Five Star-forming Galaxies across the Main Sequence at 3. Astrophysical Journal, 2020, 891, 83.	1.6	15
48	A3COSMOS: the dust attenuation of star-forming galaxies at <i>z</i> Â= 2.5–4.0 from the COSMOS-ALMA archive. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4724-4734.	1.6	29
49	When Gas Dynamics Decouples from Galactic Rotation: Characterizing ISM Circulation in Disk Galaxies. Astrophysical Journal, 2020, 892, 94.	1.6	7
50	The Redshift and Star Formation Mode of AzTEC2: A Pair of Massive Galaxies at zÂ=Â4.63. Astrophysical Journal, 2020, 890, 171.	1.6	19
51	The headlight cloud in NGC 628: An extreme giant molecular cloud in a typical galaxy disk. Astronomy and Astrophysics, 2020, 634, A121.	2.1	32
52	Ubiquitous velocity fluctuations throughout the molecular interstellar medium. Nature Astronomy, 2020, 4, 1064-1071.	4.2	38
53	Rotation of molecular clouds in M 51. Astronomy and Astrophysics, 2020, 633, A17.	2.1	15
54	Extended H <i>α</i> over compact far-infrared continuum in dusty submillimeter galaxies. Astronomy and Astrophysics, 2020, 635, A119.	2.1	22

#	Article	IF	CITATIONS
55	Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: The KINGFISH Sample. Astrophysical Journal, 2020, 889, 150.	1.6	54
56	Pa \hat{I}^2 , H \hat{I} ±, and Attenuation in NGC 5194 and NGC 6946. Astrophysical Journal, 2020, 892, 23.	1.6	8
57	Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-forming Galaxies. Astrophysical Journal, 2020, 892, 148.	1.6	88
58	Highly turbulent gas on GMC scales in NGCÂ3256, the nearest luminous infrared galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4730-4748.	1.6	11
59	PHANCS CO Kinematics: Disk Orientations and Rotation Curves at 150 pc Resolution. Astrophysical Journal, 2020, 897, 122.	1.6	77
60	The VLA-COSMOS 3 GHz Large Project: Evolution of Specific Star Formation Rates out to zÂâ^1/4Â5. Astrophysical Journal, 2020, 899, 58.	1.6	72
61	The Star Formation in Radio Survey: 3–33 GHz Imaging of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions. Astrophysical Journal, Supplement Series, 2020, 248, 25.	3.0	24
62	Molecular Gas Properties on Cloud Scales across the Local Star-forming Galaxy Population. Astrophysical Journal Letters, 2020, 901, L8.	3.0	85
63	Dense gas in a giant molecular filament. Astronomy and Astrophysics, 2020, 641, A53.	2.1	12
64	Revealing the Stellar Mass and Dust Distributions of Submillimeter Galaxies at Redshift 2. Astrophysical Journal, 2019, 879, 54.	1.6	56
65	EMPIRE: The IRAM 30 m Dense Gas Survey of Nearby Galaxies. Astrophysical Journal, 2019, 880, 127.	1.6	84
66	MAGPHYS+photo-z: Constraining the Physical Properties of Galaxies with Unknown Redshifts. Astrophysical Journal, 2019, 882, 61.	1.6	49
67	Automated Mining of the ALMA Archive in the COSMOS Field (A ³ COSMOS). I. Robust ALMA Continuum Photometry Catalogs and Stellar Mass and Star Formation Properties for â^¼700 Galaxies at zÂ=Â0.5–6. Astrophysical Journal, Supplement Series, 2019, 244, 40.	3.0	54
68	Calibrating Star Formation Rate Prescriptions at Different Scales (10 pc–1 kpc) in M31. Astrophysical Journal, 2019, 873, 3.	1.6	12
69	The IRAM/GISMO 2 mm Survey in the COSMOS Field ^{â^—} . Astrophysical Journal, 2019, 877, 45.	1.6	25
70	The spatial relation between young star clusters and molecular clouds in M51 with LEGUS. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4707-4723.	1.6	70
71	A diversity of starburst-triggering mechanisms in interacting galaxies and their signatures in CO emission. Astronomy and Astrophysics, 2019, 625, A65.	2.1	28
72	ALMA Reveals Potential Evidence for Spiral Arms, Bars, and Rings in High-redshift Submillimeter Galaxies. Astrophysical Journal, 2019, 876, 130.	1.6	97

#	Article	IF	CITATIONS
73	Dense gas is not enough: environmental variations in the star formation efficiency of dense molecular gas at 100 pc scales in M 51. Astronomy and Astrophysics, 2019, 625, A19.	2.1	47
74	Diagnostics of a nuclear starburst: water and methanol masers. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5434-5443.	1.6	11
75	The VLA-COSMOS 3 GHz Large Project: Average radio spectral energy distribution of highly star-forming galaxies. Astronomy and Astrophysics, 2019, 621, A139.	2.1	21
76	Uncovering the spatial distribution of stars and dust in <i>z</i> â^¼ 2 Submillimeter Galaxies. Proceedings of the International Astronomical Union, 2019, 15, 274-279.	0.0	0
77	Radio continuum size evolution of star-forming galaxies over 0.35 < <i>z</i> < 2.25. Astronomy and Astrophysics, 2019, 625, A114.	2.1	31
78	Discovery of Four Apparently Cold Dusty Galaxies at zÂ=Â3.62–5.85 in the COSMOS Field: Direct Evidence of Cosmic Microwave Background Impact on High-redshift Galaxy Observables. Astrophysical Journal, 2019, 887, 144.	1.6	65
79	Mapping Metallicity Variations across Nearby Galaxy Disks. Astrophysical Journal, 2019, 887, 80.	1.6	103
80	Multi-wavelength Properties of Radio- and Machine-learning-identified Counterparts to Submillimeter Sources in S2COSMOS. Astrophysical Journal, 2019, 886, 48.	1.6	21
81	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. I. Assessment of Multi-scale Variations. Astrophysical Journal, 2019, 887, 49.	1.6	57
82	[C i](1–0) and [C i](2–1) in Resolved Local Galaxies*. Astrophysical Journal, 2019, 887, 105.	1.6	22
83	Automated Mining of the ALMA Archive in the COSMOS Field (A ³ COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6. Astrophysical Journal, 2019, 887, 235.	1.6	85
84	Mapping Electron Temperature Variations across a Spiral Arm in NGC 1672. Astrophysical Journal Letters, 2019, 885, L31.	3.0	17
85	Full-disc 13CO(1–0) mapping across nearby galaxies of the EMPIRE survey and the CO-to-H2 conversion factor. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3909-3933.	1.6	55
86	A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. I. Cloud-scale Gas Motions. Astrophysical Journal, 2018, 854, 100.	1.6	67
87	Two Orders of Magnitude Variation in the Star Formation Efficiency across the Premerger Galaxy NGC 2276. Astrophysical Journal Letters, 2018, 869, L38.	3.0	16
88	Azimuthal variations of gas-phase oxygen abundance in NGC 2997. Astronomy and Astrophysics, 2018, 618, A64.	2.1	32
89	Do Spectroscopic Dense Gas Fractions Track Molecular Cloud Surface Densities?. Astrophysical Journal Letters, 2018, 868, L38.	3.0	27
90	The young star cluster population of M51 with LEGUS – II. Testing environmental dependences. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1683-1707.	1.6	52

#	Article	IF	CITATIONS
91	Molecular gas in AzTEC/C159: a star-forming disk galaxy 1.3 Gyr after the Big Bang. Astronomy and Astrophysics, 2018, 615, A25.	2.1	13
92	Resolving the ISM at the Peak of Cosmic Star Formation with ALMA: The Distribution of CO and Dust Continuum in zÂâ^1⁄4Â2.5 Submillimeter Galaxies. Astrophysical Journal, 2018, 863, 56.	1.6	92
93	"Super-deblended―Dust Emission in Galaxies. II. Far-IR to (Sub)millimeter Photometry and High-redshift Galaxy Candidates in the Full COSMOS Field. Astrophysical Journal, 2018, 864, 56.	1.6	108
94	Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies. Astrophysical Journal, 2018, 860, 172.	1.6	182
95	Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies. Astrophysical Journal, 2018, 858, 90.	1.6	75
96	The Star Formation in Radio Survey: Jansky Very Large Array 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions. Astrophysical Journal, Supplement Series, 2018, 234, 24.	3.0	26
97	The infrared–radio correlation of spheroid- and disc-dominated star-forming galaxies to zÂâ^1⁄4Â1.5 in the COSMOS field. Monthly Notices of the Royal Astronomical Society, 2018, 475, 827-838.	1.6	27
98	Hidden in Plain Sight: A Massive, Dusty Starburst in a Galaxy Protocluster at zÂ=Â5.7 in the COSMOS Field. Astrophysical Journal, 2018, 861, 43.	1.6	61
99	Star Formation Efficiency per Free-fall Time in nearby Galaxies. Astrophysical Journal Letters, 2018, 861, L18.	3.0	97
100	Constraints on submicrojansky radio number counts based on evolving VLA-COSMOS luminosity functions. Astronomy and Astrophysics, 2018, 614, A47.	2.1	20
101	A 50 pc Scale View of Star Formation Efficiency across NGC 628. Astrophysical Journal Letters, 2018, 863, L21.	3.0	78
102	The Dust and [C ii]ÂMorphologies of Redshift â^¼4.5 Sub-millimeter Galaxies at â^¼200 pc Resolution: The Absence of Large Clumps in the Interstellar Medium at High-redshift. Astrophysical Journal, 2018, 859, 12.	1.6	69
103	Starburst to Quiescent from HST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies at zÂâ^¼Â4.5. Astrophysical Journal, 2018, 856, 121.	1.6	65
104	Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry and Water and Methanol Masers in IC 342, NGC 6946, and NGC 2146. Astrophysical Journal, 2018, 856, 134.	1.6	19
105	The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies. Astrophysical Journal, 2017, 836, 185.	1.6	102
106	¹³ CO/C ¹⁸ O Gradients across the Disks of Nearby Spiral Galaxies. Astrophysical Journal Letters, 2017, 836, L29.	3.0	36
107	The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation. Astrophysical Journal, 2017, 836, 62.	1.6	47
108	An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts. Astrophysical Journal, 2017, 840, 78.	1.6	95

#	Article	IF	CITATIONS
109	The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to <i>z</i> ≲ 6. Astronor Astrophysics, 2017, 602, A3.	ny and 2.1	113
110	The VLA-COSMOS 3 GHz Large Project: Cosmic star formation history since <i>z</i> ~ 5. Astronomy and Astrophysics, 2017, 602, A5.	2.1	100
111	The VLA-COSMOS 3 GHz Large Project: Continuum data and source catalog release. Astronomy and Astrophysics, 2017, 602, A1.	2.1	230
112	Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry, andÂWater and Methanol Masers in the Nuclear Starburst of NGC 253. Astrophysical Journal, 2017, 842, 124.	1.6	32
113	An ALMA survey of submillimetre galaxies in the COSMOS field: The extent of the radio-emitting region revealed by 3 GHz imaging with the Very Large Array. Astronomy and Astrophysics, 2017, 602, A54.	2.1	24
114	A REVISED PLANETARY NEBULA LUMINOSITY FUNCTION DISTANCE TO NGC 628 USING MUSE. Astrophysical Journal, 2017, 834, 174.	1.6	42
115	Interactions of the Galactic bar and spiral arm in NGC 3627. Astronomy and Astrophysics, 2017, 597, A85.	2.1	37
116	The Chemical Evolution Carousel of Spiral Galaxies: Azimuthal Variations of Oxygen Abundance in NGC1365. Astrophysical Journal, 2017, 846, 39.	1.6	60
117	Attenuation Modified by DIG and Dust as Seen in M31. Astrophysical Journal, 2017, 844, 155.	1.6	12
118	Clues to the Formation of Spiral Structure in M51 from the Ages and Locations of Star Clusters. Astrophysical Journal, 2017, 845, 78.	1.6	16
119	Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions. Astrophysical Journal, 2017, 835, 217.	1.6	62
120	The Survey of Lines in M31 (SLIM): The Drivers of the [C ii]/TIR Variation. Astrophysical Journal, 2017, 842, 128.	1.6	12
121	A 33 GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum. Astrophysical Journal, 2017, 843, 117.	1.6	37
122	The VLA-COSMOS 3 GHz Large Project: The infrared-radio correlation of star-forming galaxies and AGN to <i>z </i> ≲ 6. Astronomy and Astrophysics, 2017, 602, A4.	2.1	126
123	Optical depth estimates and effective critical densities of dense gas tracers in the inner parts of nearby galaxy discs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 49-62.	1.6	43
124	Cloud-scale ISM Structure and Star Formation in M51. Astrophysical Journal, 2017, 846, 71.	1.6	119
125	On the Disappearance of a Cold Molecular Torus around the Low-luminosity Active Galactic Nucleus of NGC 1097. Astrophysical Journal Letters, 2017, 845, L5.	3.0	15
126	Radio Selection of the Most Distant Galaxy Clusters. Astrophysical Journal Letters, 2017, 846, L31.	3.0	21

#	Article	IF	CITATIONS
127	The dust attenuation of star-forming galaxies at zÂâ^¼Â3 and beyond: New insights from ALMA observations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 483-490.	1.6	51
128	(Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. Astronomy and Astrophysics, 2017, 597, A5.	2.1	17
129	An ALMA survey of submillimeter galaxies in the COSMOS field: Multiwavelength counterparts and redshift distribution. Astronomy and Astrophysics, 2017, 608, A15.	2.1	63
130	The VLA-COSMOS 3 GHz Large Project: Multiwavelength counterparts and the composition of the faint radio population. Astronomy and Astrophysics, 2017, 602, A2.	2.1	121
131	Average radio spectral energy distribution of highly star-forming galaxies. Proceedings of the International Astronomical Union, 2017, 12, 191-194.	0.0	0
132	The fine line between normal and starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2124-2142.	1.6	16
133	(Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. Astronomy and Astrophysics, 2017, 597, A4.	2.1	24
134	An ALMA survey of submillimetre galaxies in the COSMOS field: Physical properties derived from energy balance spectral energy distribution modelling. Astronomy and Astrophysics, 2017, 606, A17.	2.1	61
135	THE AGE, MASS, AND SIZE DISTRIBUTIONS OF STAR CLUSTERS IN M51. Astrophysical Journal, 2016, 824, 71.	1.6	38
136	BEING WISE II: REDUCING THE INFLUENCE OF STAR FORMATION HISTORY ON THE MASS-TO-LIGHT RATIO OF QUIESCENT GALAXIES. Astrophysical Journal, 2016, 832, 198.	1.6	19
137	Gravitational torques imply molecular gas inflow towards the nucleus of M 51. Astronomy and Astrophysics, 2016, 588, A33.	2.1	34
138	A PORTRAIT OF COLD GAS IN GALAXIES AT 60 pc RESOLUTION AND A SIMPLE METHOD TO TEST HYPOTHESES THAT LINK SMALL-SCALE ISM STRUCTURE TO GALAXY-SCALE PROCESSES. Astrophysical Journal, 2016, 831, 16.	1.6	92
139	GAS FRACTION AND DEPLETION TIME OF MASSIVE STAR-FORMING GALAXIES AT zÂâ^¼Â3.2: NO CHANGE IN GLO STAR FORMATION PROCESS OUT TO zÂ>Â3. Astrophysical Journal, 2016, 833, 112.	BAL 1.6	87
140	KILOPARSEC-SCALE DUST DISKS IN HIGH-REDSHIFT LUMINOUS SUBMILLIMETER GALAXIES. Astrophysical Journal, 2016, 833, 103.	1.6	212
141	THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS. Astrophysical Journal, 2016, 817, 34.	1.6	242
142	CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION. Astrophysical Journal, 2016, 827, 103.	1.6	58
143	ALMA RESOLVES THE TORUS OF NGC 1068: CONTINUUM AND MOLECULAR LINE EMISSION. Astrophysical Journal Letters, 2016, 823, L12.	3.0	170
144	AGN feedback in the nucleus of M 51. Astronomy and Astrophysics, 2016, 593, A118.	2.1	36

#	Article	IF	CITATIONS
145	SUBMILLIMETER-HCN DIAGRAM FOR ENERGY DIAGNOSTICS IN THE CENTERS OF GALAXIES. Astrophysical Journal, 2016, 818, 42.	1.6	63
146	THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, 2016, 819, 62.	1.6	348
147	THE EMPIRE SURVEY: SYSTEMATIC VARIATIONS IN THE DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY FROM FULL-DISK MAPPING OF M51. Astrophysical Journal Letters, 2016, 822, L26.	3.0	98
148	ALMA OBSERVATIONS OF THE SUBMILLIMETER DENSE MOLECULAR GAS TRACERS IN THE LUMINOUS TYPE-1 ACTIVE NUCLEUS OF NGC 7469. Astrophysical Journal, 2015, 811, 39.	1.6	41
149	MICROWAVE CONTINUUM EMISSION AND DENSE GAS TRACERS IN NGC 3627: COMBINING JANSKY VLA AND ALMA OBSERVATIONS. Astrophysical Journal, 2015, 813, 118.	1.6	19
150	DISCOVERY OF MASSIVE, MOSTLY STAR FORMATION QUENCHED GALAXIES WITH EXTREMELY LARGE Ly <i>$\hat{i} + \hat{i} + \hat{i} = \hat{i} + \hat{i} + \hat{i} = \hat{i} + \hat{i} + \hat{i} + \hat{i} = \hat{i} + \hat{i} + \hat{i} + \hat{i} + \hat{i} = \hat{i} +$</i>	3.0	14
151	THE QUASAR-LBG TWO-POINT ANGULAR CROSS-CORRELATION FUNCTION AT <i>z</i> â^1⁄4 4 IN THE COSMOS FIELD. Astrophysical Journal, 2015, 809, 138.	1.6	11
152	Giant Molecular Cloud Populations in Nearby Galaxies. Proceedings of the International Astronomical Union, 2015, 11, 30-37.	0.0	2
153	(Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. Astronomy and Astrophysics, 2015, 584, A32.	2.1	19
154	The Subaru COSMOS 20: Subaru optical imaging of the HST COSMOS field with 20Âfilters. Publication of the Astronomical Society of Japan, 2015, 67, .	1.0	65
155	Physical properties of <i>z</i> > 4 submillimeter galaxies in the COSMOS field. Astronomy and Astrophysics, 2015, 576, A127.	2.1	43
156	(Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. Astronomy and Astrophysics, 2015, 577, A29.	2.1	33
157	A DIRECT CONSTRAINT ON THE GAS CONTENT OF A MASSIVE, PASSIVELY EVOLVING ELLIPTICAL GALAXY AT $\langle i \rangle z \langle i \rangle = 1.43$. Astrophysical Journal Letters, 2015, 806, L20.	3.0	40
158	HIGH-RESOLUTION RADIO CONTINUUM MEASUREMENTS OF THE NUCLEAR DISKS OF Arp 220. Astrophysical Journal, 2015, 799, 10.	1.6	69
159	AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES. Astrophysical Journal, 2015, 799, 194.	1.6	111
160	DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES. Astrophysical Journal, 2015, 799, 96.	1.6	89
161	THE SURVEY OF LINES IN M31 (SLIM): INVESTIGATING THE ORIGINS OF [C II] EMISSION. Astrophysical Journal, 2015, 798, 24.	1.6	30
162	SHORT GMC LIFETIMES: AN OBSERVATIONAL ESTIMATE WITH THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS). Astrophysical Journal, 2015, 806, 72.	1.6	77

#	Article	IF	CITATIONS
163	THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G): PRECISE STELLAR MASS DISTRIBUTIONS FROM AUTOMATED DUST CORRECTION AT 3.6 <i>1¼</i> m. Astrophysical Journal, Supplement Series, 2015, 219, 5.	3.0	177
164	THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G): STELLAR MASSES, SIZES, AND RADIAL PROFILES FOR 2352 NEARBY GALAXIES. Astrophysical Journal, Supplement Series, 2015, 219, 3.	3.0	111
165	Multimolecule ALMA observations toward the Seyfert 1 galaxy NGC 1097. Astronomy and Astrophysics, 2015, 573, A116.	2.1	65
166	Molecular line emission in NGC 1068 imaged with ALMA. Astronomy and Astrophysics, 2014, 570, A28.	2.1	107
167	BEING <i>WISE</i> . I. VALIDATING STELLAR POPULATION MODELS AND <i>M</i> _{â<†} / <i>L</i> RATIOS AT 3.4 and 4.6 μm. Astrophysical Journal, 2014, 797, 55.	1.6	36
168	An ALMA survey of sub-millimetre Galaxies in the Extended Chandra Deep Field South: the far-infrared properties of SMGs. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1267-1287.	1.6	266
169	THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS): ENVIRONMENTAL DEPENDENCE OF GIANT MOLECULAR CLOUD PROPERTIES IN M51. Astrophysical Journal, 2014, 784, 3.	1.6	198
170	ANDROMEDA'S DUST. Astrophysical Journal, 2014, 780, 172.	1.6	258
171	An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: radio properties and the far-infrared/radio correlation. Monthly Notices of the Royal Astronomical Society, 2014, 442, 577-588.	1.6	46
172	RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S ⁴ G IRAC 3.6 AND 4.5 μm IMAGES. II. THE CONVERSION FROM LIGHT TO MASS. Astrophysical Journal, 2014, 788, 144.	1.6	199
173	THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS): MULTI-PHASE COLD GAS KINEMATIC OF M51. Astrophysical Journal, 2014, 784, 4.	1.6	70
174	A FAR-IR VIEW OF THE STARBURST-DRIVEN SUPERWIND IN NGC 2146. Astrophysical Journal, 2014, 790, 26.	1.6	18
175	AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: THE REDSHIFT DISTRIBUTION AND EVOLUTION OF SUBMILLIMETER GALAXIES. Astrophysical Journal, 2014, 788, 125.	1.6	245
176	ALMA IMAGING OF GAS AND DUST IN A GALAXY PROTOCLUSTER AT REDSHIFT 5.3: [C II] EMISSION IN "TYPICAL―GALAXIES AND DUSTY STARBURSTS â‰^1 BILLION YEARS AFTER THE BIG BANG. Astrophysical Journal, 2014, 796, 84.	1.6	151
177	Molecular line emission in NGC 1068 imaged with ALMA. Astronomy and Astrophysics, 2014, 567, A125.	2.1	330
178	Dust as a tracer of gas in galaxies. Proceedings of the International Astronomical Union, 2014, 10, 318-318.	0.0	0
179	ALMA reveals the feeding of the Seyfert 1 nucleus in NGC 1566. Astronomy and Astrophysics, 2014, 565, A97.	2.1	100
180	A COMPARATIVE STUDY OF GIANT MOLECULAR CLOUDS IN M51, M33, AND THE LARGE MAGELLANIC CLOUD. Astrophysical Journal, 2013, 779, 46.	1.6	149

#	Article	IF	CITATIONS
181	PROBABILITY DISTRIBUTION FUNCTIONS OF ¹² CO(<i>J</i> = 1 â†' 0) BRIGHTNESS AND INTEGRATED INTENSITY IN M51: THE PAWS VIEW. Astrophysical Journal, 2013, 779, 44.	1.6	67
182	Submillimeter ALMA Observations of the Dense Gas in the Low-Luminosity Type-1 Active Nucleus of NGC1097. Publication of the Astronomical Society of Japan, 2013, 65, .	1.0	78
183	THE PLATEAU DE BURE + 30Âm ARCSECOND WHIRLPOOL SURVEY REVEALS A THICK DISK OF DIFFUSE MOLECULAR GAS IN THE M51 GALAXY. Astrophysical Journal, 2013, 779, 43.	1.6	135
184	GAS KINEMATICS ON GIANT MOLECULAR CLOUD SCALES IN M51 WITH PAWS: CLOUD STABILIZATION THROUGH DYNAMICAL PRESSURE. Astrophysical Journal, 2013, 779, 45.	1.6	142
185	AMMONIA THERMOMETRY OF STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 779, 33.	1.6	40
186	MAPPING DUST THROUGH EMISSION AND ABSORPTION IN NEARBY GALAXIES. Astrophysical Journal, 2013, 771, 62.	1.6	86
187	THE CO-TO-H ₂ CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES. Astrophysical Journal, 2013, 777, 5.	1.6	418
188	AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: SOURCE CATALOG AND MULTIPLICITY. Astrophysical Journal, 2013, 768, 91.	1.6	256
189	MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES. Astronomical Journal, 2013, 146, 19.	1.9	505
190	EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT <i>z</i> = 0.1-3 IN COSMOS. Astrophysical Journal, Supplement Series, 2013, 206, 3.	3.0	146
191	THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS). I. A CLOUD-SCALE/MULTI-WAVELENGTH VIEW OF THE INTERSTELLAR MEDIUM IN A GRAND-DESIGN SPIRAL GALAXY. Astrophysical Journal, 2013, 779, 42.	1.6	191
192	CLUMPING AND THE INTERPRETATION OF kpc-SCALE MAPS OF THE INTERSTELLAR MEDIUM: SMOOTH H I AND CLUMPY, VARIABLE H ₂ SURFACE DENSITY. Astrophysical Journal Letters, 2013, 769, L12.	3.0	43
193	THE IMPACT OF BARS ON DISK BREAKS AS PROBED BY S ⁴ G IMAGING. Astrophysical Journal, 2013, 771, 59.	1.6	101
194	An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: high-resolution 870 μm source counts. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2-9.	1.6	213
195	SHOCK EXCITED MOLECULES IN NGC 1266: ULIRG CONDITIONS AT THE CENTER OF A BULGE-DOMINATED GALAXY. Astrophysical Journal Letters, 2013, 779, L19.	3.0	41
196	ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433. Astronomy and Astrophysics, 2013, 558, A124.	2.1	137
197	A detailed study of the radio-FIR correlation in NGC 6946 with <i>Herschel</i> -PACS/SPIRE from KINGFISH. Astronomy and Astrophysics, 2013, 552, A19.	2.1	67
198	Gas fraction and star formation efficiency at <i>z</i> < 1.0. Astronomy and Astrophysics, 2013, 550, A41.	2.1	102

#	Article	IF	CITATIONS
199	Multi-scale radio-infrared correlations in M 31 and M 33: The role of magnetic fields and star formation. Astronomy and Astrophysics, 2013, 557, A129.	2.1	58
200	QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES. Astrophysical Journal, Supplement Series, 2012, 200, 10.	3.0	25
201	Millimeter imaging of submillimeter galaxies in the COSMOS field: redshift distribution. Astronomy and Astrophysics, 2012, 548, A4.	2.1	108
202	RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S ⁴ G IRAC 3.6 AND 4.5 μm IMAGES. I. CORRECTING FOR CONTAMINATION BY POLYCYCLIC AROMATIC HYDROCARBONS, HOT DUST, AND INTERMEDIATE-AGE STARS. Astrophysical Journal, 2012, 744, 17.	1.6	149
203	THE STAR FORMATION IN RADIO SURVEY: GBT 33 GHz OBSERVATIONS OF NEARBY GALAXY NUCLEI AND EXTRANUCLEAR STAR-FORMING REGIONS. Astrophysical Journal, 2012, 761, 97.	1.6	83
204	The heating of dust by old stellar populations in the bulge of M31. Monthly Notices of the Royal Astronomical Society, 2012, 426, 892-902.	1.6	103
205	<i>>Herschel</i> -PACS observations of [O <scp>i</scp>]63  μm towards submillimetre galaxies at <i>z</i> â ¹ ⁄ 1. Monthly Notices of the Royal Astronomical Society, 2012, 427, 520-532.	4 1.6	29
206	An ALMA survey of submillimetre galaxies in the Extended <i>Chandra Deep Field</i> -South: detection of [C <scp>ii</scp>] at <i>z</i> = 4.4. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1066-1074.	1.6	95
207	<i>HERSCHEL</i> FAR-INFRARED AND SUBMILLIMETER PHOTOMETRY FOR THE KINGFISH SAMPLE OF NEARBY GALAXIES. Astrophysical Journal, 2012, 745, 95.	1.6	209
208	CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT <i>z</i> â ¹ /4 5 IN THE COSMOS FIELD. Astrophysical Journal, 2012, 756, 160.	1.6	34
209	RESOLVING THE FAR-IR LINE DEFICIT: PHOTOELECTRIC HEATING AND FAR-IR LINE COOLING IN NGC 1097 AND NGC 4559. Astrophysical Journal, 2012, 747, 81.	1.6	83
210	Physical properties of dense molecular gas in centres of Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1963-1976.	1.6	48
211	KINGFISH—Key Insights on Nearby Galaxies: A Far-Infrared Survey with <i>Herschel</i> : Survey Description and Image Atlas1. Publications of the Astronomical Society of the Pacific, 2011, 123, 1347-1369.	1.0	349
212	THE EMISSION BY DUST AND STARS OF NEARBY GALAXIES IN THE <i>HERSCHEL</i> KINGFISH SURVEY. Astrophysical Journal, 2011, 738, 89.	1.6	145
213	NEW CONSTRAINTS ON MASS-DEPENDENT DISRUPTION OF STAR CLUSTERS IN M51. Astrophysical Journal, 2011, 727, 88.	1.6	47
214	SUBMILLIMETER ARRAY/PLATEAU DE BURE INTERFEROMETER MULTIPLE LINE OBSERVATIONS OF THE NEARBY SEYFERT 2 GALAXY NGC 1068: SHOCK-RELATED GAS KINEMATICS AND HEATING IN THE CENTRAL 100 pc?. Astrophysical Journal, 2011, 736, 37.	1.6	98
215	THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE <i>SPITZER </i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ C): LAIR OF MISSING BARYONS?. Astrophysical Journal, 2011, 741, 28.	1.6	99
216	THE REDSHIFT AND NATURE OF AzTEC/COSMOS 1: A STARBURST GALAXY AT <i>z</i> = 4.6. Astrophysical Journal Letters, 2011, 731, L27.	3.0	31

#	Article	IF	CITATIONS
217	THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD. Astrophysical Journal, 2011, 730, 61.	1.6	515
218	COMPLEX RADIO SPECTRAL ENERGY DISTRIBUTIONS IN LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES. Astrophysical Journal Letters, 2011, 739, L25.	3.0	35
219	PROBING THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT <i>z</i> â^¼ 4 IN THE COSMOS FIELD. Astrophysical Journal Letters, 2011, 728, L25.	3.0	45
220	CALIBRATING EXTINCTION-FREE STAR FORMATION RATE DIAGNOSTICS WITH 33 GHz FREE-FREE EMISSION IN NGC 6946. Astrophysical Journal, 2011, 737, 67.	1.6	598
221	A massive protocluster of galaxies at a redshift of z â‰^ 5.3. Nature, 2011, 470, 233-235.	13.7	234
222	THE LOCAL RADIO-IR RELATION IN M51. Astronomical Journal, 2011, 141, 41.	1.9	72
223	THE <i>XMM-NEWTON</i> WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2010, 716, 348-369.	1.6	266
224	A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. I. SPECTRAI ENERGY DISTRIBUTIONS AND LUMINOSITIES. Astrophysical Journal, 2010, 709, 572-596.	1.6	81
225	NO EVOLUTION IN THE IR–RADIO RELATION FOR IR-LUMINOUS GALAXIES AT <i>z</i> < 2 IN THE COSMOS FIELD. Astrophysical Journal Letters, 2010, 714, L190-L195.	3.0	88
226	ENVIRONMENT OF MAMBO GALAXIES IN THE COSMOS FIELD. Astrophysical Journal Letters, 2010, 708, L36-L41.	3.0	28
227	MULTI-TRANSITION STUDY OF M51'S MOLECULAR GAS SPIRAL ARMS. Astrophysical Journal, 2010, 719, 1588-1601.	1.6	43
228	A MASSIVE MOLECULAR GAS RESERVOIR IN THE <i>z</i> = 5.3 SUBMILLIMETER GALAXY AzTEC-3. Astrophysical Journal Letters, 2010, 720, L131-L136.	3.0	148
229	THE DETECTION OF ANOMALOUS DUST EMISSION IN THE NEARBY GALAXY NGC 6946. Astrophysical Journal Letters, 2010, 709, L108-L113.	3.0	73
230	A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLI OF MERGERS IN GALAXY EVOLUTION. Astrophysical Journal, 2010, 721, 98-123.	E 1.6	125
231	Detection of molecular gas in a distant submillimetre galaxy at <i>z</i> = 4.76 with Australia Telescope Compact Array. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 407, L103-L107.	1.2	55
232	BLAST: the far-infrared/radio correlation in distant galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 402, 245-258.	1.6	123
233	Enhanced dust heating in the bulges of early-type spiral galaxies. Astronomy and Astrophysics, 2010, 518, L56.	2.1	34
234	THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG. Astrophysical Journal, Supplement Series, 2010, 188, 384-404.	3.0	180

#	Article	IF	CITATIONS
235	The <i>Spitzer</i> Survey of Stellar Structure in Galaxies. Publications of the Astronomical Society of the Pacific, 2010, 122, 1397-1414.	1.0	426
236	Molecular gas chemistry in AGN. Astronomy and Astrophysics, 2010, 519, A2.	2.1	72
237	STAR FORMATION AND DUST OBSCURATION AT <i>z</i> â‰^ 2: GALAXIES AT THE DAWN OF DOWNSIZING. Astrophysical Journal, 2009, 698, L116-L120.	1.6	311
238	A submillimetre galaxy at <i>z</i> = 4.76 in the LABOCA survey of the Extended <i>Chandra Deep Field</i> -South. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1905-1914.	1.6	108
239	THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH. Astrophysical Journal, 2009, 707, 1201-1216.	1.6	304
240	THE <i>CHANDRA</i> COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2009, 184, 158-171.	3.0	361
241	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2009, 496, 85-105.	2.1	41
242	Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence. Astrophysical Journal, 2008, 675, 1141-1155.	1.6	298
243	Spectroscopic Confirmation of an Extreme Starburst at Redshift 4.547. Astrophysical Journal, 2008, 681, L53-L56.	1.6	108
244	A SINFONI VIEW OF GALAXY CENTERS: MORPHOLOGY AND KINEMATICS OF FIVE NUCLEAR STAR-FORMATION RINGS. Astronomical Journal, 2008, 135, 479-495.	1.9	89
245	Molecular Gas in a Submillimeter Galaxy at <i>z</i> = 4.5: Evidence for a Major Merger at 1 Billion Years after the Big Bang. Astrophysical Journal, 2008, 689, L5-L8.	1.6	95
246	Molecular Gas and Dust in Arp 94: The Formation of a Recycled Galaxy in an Interacting System. Astrophysical Journal, 2008, 685, 181-193.	1.6	19
247	The VLAâ€COSMOS Survey. III. Further Catalog Analysis and the Radio Source Counts. Astrophysical Journal, 2008, 681, 1129-1135.	1.6	104
248	Molecular Gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2008, 482, 133-150.	2.1	62
249	Properties of the molecular gas in a starbursting QSO at <i>z</i> = 1.83 in the COSMOS field. Astronomy and Astrophysics, 2008, 491, 173-181.	2.1	33
250	The Cosmic Evolution Survey (COSMOS): Overview. Astrophysical Journal, Supplement Series, 2007, 172, 1-8.	3.0	1,449
251	The First Release COSMOS Optical and Nearâ€IR Data and Catalog. Astrophysical Journal, Supplement Series, 2007, 172, 99-116.	3.0	672
252	COSMOS: <i>Hubble Space Telescope</i> Observations. Astrophysical Journal, Supplement Series, 2007, 172, 38-45.	3.0	392

#	Article	IF	CITATIONS
253	COSBO: The MAMBO 1.2 Millimeter Imaging Survey of the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 132-149.	3.0	141
254	zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < <i>z</i> < 3 in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 70-85.	3.0	775
255	Magellan Spectroscopy of AGN Candidates in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 383-395.	3.0	104
256	The VLA OSMOS Survey. II. Source Catalog of the Large Project. Astrophysical Journal, Supplement Series, 2007, 172, 46-69.	3.0	258
257	The Cosmic Evolution Survey (COSMOS): Subaru Observations of the <i>HST</i> Cosmos Field. Astrophysical Journal, Supplement Series, 2007, 172, 9-28.	3.0	279
258	S OSMOS: The <i>Spitzer</i> Legacy Survey of the <i>Hubble Space Telescope</i> ACS 2 deg ² COSMOS Field I: Survey Strategy and First Analysis. Astrophysical Journal, Supplement Series, 2007, 172, 86-98.	3.0	503
259	The <i>XMMâ€Newton</i> Wideâ€Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies. Astrophysical Journal, Supplement Series, 2007, 172, 182-195.	3.0	234
260	A Nearâ€Infrared Study of 2MASS Bars in Local Galaxies: An Anchor for Highâ€Redshift Studies. Astrophysical Journal, 2007, 657, 790-804.	1.6	254
261	Building up mass in the centers of late type galaxies. Proceedings of the International Astronomical Union, 2007, 3, 169-172.	0.0	0
262	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2007, 471, 113-125.	2.1	38
263	Lyα Emitters at Redshift 5.7 in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 523-544.	3.0	96
264	Evidence for a Population of Highâ€Redshift Submillimeter Galaxies from Interferometric Imaging. Astrophysical Journal, 2007, 671, 1531-1537.	1.6	156
265	Molecular Gas Dynamics in NGC 6946: A Barâ€driven Nuclear Starburst "Caught in the Actâ€. Astrophysical Journal, 2006, 649, 181-200.	1.6	71
266	Gas and stellar dynamics in NGC 1068: probing the galactic gravitational potential. Monthly Notices of the Royal Astronomical Society, 2006, 365, 367-384.	1.6	81
267	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2005, 441, 1011-1030.	2.1	138
268	The Unusual Tidal Dwarf Candidate in the Merger System NGC 3227/3226: Star Formation in a Tidal Shock?. Astrophysical Journal, 2004, 614, 648-657.	1.6	31
269	The VLA-COSMOS Survey. I. Radio Identifications from the Pilot Project. Astronomical Journal, 2004, 128, 1974-1989.	1.9	68
270	Molecular Gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2003, 407, 485-502.	2.1	102

#	Article	IF	CITATIONS
271	Toward the Secondary Bar: Gas Morphology and Dynamics in NGC 4303. Astrophysical Journal, 2002, 575, 826-844.	1.6	46
272	The Nuclear Stellar Cluster in the Seyfert 1 Galaxy NGC 3227: High Angular Resolution Nearâ€Infrared Imaging and Spectroscopy. Astrophysical Journal, 2001, 549, 254-273.	1.6	15
273	Bars and Warps Traced by the Molecular Gas in the Seyfert 2 Galaxy NGC 1068. Astrophysical Journal, 2000, 533, 850-868.	1.6	188
274	The AT-LESS CO(1-0) survey of submillimetre galaxies in the Extended Chandra Deep Field South: First results on cold molecular gas in galaxies at z â^¼ 2. Monthly Notices of the Royal Astronomical Society, 0, , stx156.	1.6	13