Ashley D Spear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4278922/publications.pdf Version: 2024-02-01

ACHIEV D SDEAD

#	Article	IF	CITATIONS
1	Expected earthquake damage and repair costs in reinforced concrete frame buildings. Earthquake Engineering and Structural Dynamics, 2012, 41, 1455-1475.	2.5	152
2	Effect of Laser-Matter Interaction on Molten Pool Flow and Keyhole Dynamics. Physical Review Applied, 2019, 11, .	1.5	107
3	Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods. Computational Materials Science, 2020, 175, 109599.	1.4	87
4	The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal. International Journal of Fracture, 2019, 218, 5-61.	1.1	62
5	Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with post-mortem X-ray tomography and high-energy X-ray diffraction microscopy. Acta Materialia, 2014, 76, 413-424.	3.8	53
6	A recrystallization heat-treatment to reduce deformation anisotropy of additively manufactured Inconel 718. Materials and Design, 2021, 198, 109228.	3.3	53
7	Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 137993.	2.6	51
8	A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data. Composites Science and Technology, 2021, 207, 108627.	3.8	46
9	Modeling process–structure–property relationships in metal additive manufacturing: a review on physics-driven versus data-driven approaches. JPhys Materials, 2021, 4, 032002.	1.8	46
10	Predicting Microstructure-Sensitive Fatigue-Crack Path in 3D Using a Machine Learning Framework. Jom, 2019, 71, 2680-2694.	0.9	41
11	A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 025009.	0.8	39
12	A multiscale comparison of stochastic open-cell aluminum foam produced via conventional and additive-manufacturing routes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 181-192.	2.6	27
13	A method to generate conformal finiteâ€element meshes from 3D measurements of microstructurally small fatigueâ€crack propagation. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 737-751.	1.7	24
14	Data-Driven Materials Investigations: The Next Frontier in Understanding and Predicting Fatigue Behavior. Jom, 2018, 70, 1143-1146.	0.9	22
15	Effects of laser-energy density and build orientation on the structure–property relationships in as-built Inconel 718 manufactured by laser powder bed fusion. Additive Manufacturing, 2020, 36, 101425.	1.7	22
16	Generalized analytical displacement model for wind turbine towers under aerodynamic loading. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176, 120-130.	1.7	20
17	Investigating the efficacy of machine learning tools in modeling the continuous stabilization and carbonization process and predicting carbon fiber properties. Carbon, 2021, 174, 605-616.	5.4	16
18	Effect of chemical milling on low-cycle fatigue behavior of an Al–Mg–Si alloy. Corrosion Science, 2013, 68, 144-153.	3.0	14

ASHLEY D SPEAR

#	Article	IF	CITATIONS
19	A void descriptor function to uniquely characterize pore networks and predict ductile-metal failure properties. International Journal of Fracture, 2020, 225, 47-67.	1.1	13
20	Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions. AIAA Journal, 2011, 49, 2770-2782.	1.5	12
21	The AFRL Additive Manufacturing Modeling Challenge: Predicting Micromechanical Fields in AM IN625 Using an FFT-Based Method with Direct Input from a 3D Microstructural Image. Integrating Materials and Manufacturing Innovation, 2021, 10, 157-176.	1.2	12
22	A convected-particle tetrahedron interpolation technique in the material-point method for the mesoscale modeling of ceramics. Computational Mechanics, 2019, 64, 563-583.	2.2	11
23	Dynamic-loading behavior and anisotropic deformation of pre- and post-heat-treated IN718 fabricated by laser powder bed fusion. Additive Manufacturing, 2020, 33, 101083.	1.7	11
24	Relating the surface topography of as-built Inconel 718 surfaces to laser powder bed fusion process parameters using multivariate regression analysis. Precision Engineering, 2022, 74, 303-315.	1.8	11
25	Data-Driven Correlation Analysis Between Observed 3D Fatigue-Crack Path and Computed Fields from High-Fidelity, Crystal-Plasticity, Finite-Element Simulations. Jom, 2018, 70, 1159-1167.	0.9	10
26	Evaluation of a modified void descriptor function to uniquely characterize pore networks and predict fracture-related properties in additively manufactured metals. Acta Materialia, 2022, 223, 117464.	3.8	9
27	Three-dimensional grain mapping of open-cell metallic foam by integrating synthetic data with experimental data from high-energy X-ray diffraction microscopy. Materials Characterization, 2018, 144, 448-460.	1.9	7
28	High-throughput feature extraction for measuring attributes of deforming open-cell foams. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 140-150.	2.9	7
29	An adaptive-remeshing framework to predict impact-induced skull fracture in infants. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1595-1605.	1.4	7
30	Investigating the effect of grain structure on compressive response of open-cell metal foam using high-fidelity crystal-plasticity modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 140847.	2.6	7
31	Microstructurally small fatigue crack growth in thin, aluminum-alloy, pressure vessel liner. Procedia Engineering, 2011, 10, 686-691.	1.2	6
32	The third Sandia Fracture Challenge: from theory to practice in a classroom setting. International Journal of Fracture, 2019, 218, 171-194.	1.1	6
33	A voxel-based remeshing framework for the simulation of arbitrary three-dimensional crack growth in heterogeneous materials. Engineering Fracture Mechanics, 2019, 209, 404-422.	2.0	6
34	Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents. PLoS ONE, 2020, 15, e0244463.	1.1	6
35	Convolutional neural networks for expediting the determination of minimum volume requirements for studies of microstructurally small cracks, Part I: Model implementation and predictions. Computational Materials Science, 2022, 207, 111290.	1.4	6
36	A Tool to Generate Grain-Resolved Open-Cell Metal Foam Models. Integrating Materials and Manufacturing Innovation, 2019, 8, 247-256.	1.2	5

ASHLEY D SPEAR

#	Article	IF	CITATIONS
37	Computational analysis of the effects of geometric irregularities on the interaction of an additively manufactured 316L stainless steel stent and a coronary artery. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104878.	1.5	5
38	Determination of representative volume elements for small cracks in heterogeneous, linear-elastic domains. Engineering Fracture Mechanics, 2019, 220, 106643.	2.0	3
39	A surface-mesh gradation tool for generating gradated tetrahedral meshes of microstructures with defects. Computational Materials Science, 2021, 197, 110622.	1.4	2
40	Reconstructed and analyzed X-ray computed tomography data of investment-cast and additive-manufactured aluminum foam for visualizing ligament failure mechanisms and regions of contact during a compression test. Data in Brief, 2018, 16, 601-603.	0.5	0