Gregory S Tschumper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4278871/publications.pdf Version: 2024-02-01

		117453	110170
115	4,417	34	64
papers	citations	h-index	g-index
121	121	121	4081
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Characterization of Competing Halogen- and Hydrogen-Bonding Motifs in Simple Mixed Dimers of HCN and HX (X = F, Cl, Br, and I). Journal of Physical Chemistry A, 2022, 126, 3688-3695.	1.1	7
2	Probing the Effects of Electron Deficient Aryl Substituents and a π‣ystem Extended NHC Ring on the Photocatalytic CO ₂ Reduction Reaction with Reâ€pyNHCâ€Aryl Complexes**. ChemPhotoChem, 2021, 5, 353-361.	1.5	4
3	Anharmonic vibrational frequencies of ammonia borane (BH3NH3). Journal of Chemical Physics, 2021, 154, 041104.	1.2	15
4	Torsional Profiles of Thiophene and Furan Oligomers: Probing the Effects of Heterogeneity and Chain Length. Journal of Physical Chemistry A, 2021, 125, 6228-6237.	1.1	10
5	Relative energetics of CH3CH2O, CH3CHOH, and CH2CH2OH radical products from ethanol dehydrogenation. Journal of Chemical Physics, 2021, 155, 114306.	1.2	1
6	Solvation of Isoelectronic Halide and Alkali Metal Ions by Argon Atoms. Journal of Physical Chemistry A, 2021, 125, 10524-10531.	1.1	2
7	Frontispiz: Observation of the Lowâ€Frequency Spectrum of the Water Trimer as a Sensitive Test of the Waterâ€Trimer Potential and the Dipoleâ€Moment Surface. Angewandte Chemie, 2020, 132, .	1.6	0
8	Competition between Solvent–Solvent and Solvent–Solute Interactions in the Microhydration of the Hexafluorophosphate Anion, PF6–(H2O)n=1,2. Journal of Physical Chemistry A, 2020, 124, 8744-8752.	1.1	2
9	Observation of the Lowâ€Frequency Spectrum of the Water Trimer as a Sensitive Test of the Waterâ€Trimer Potential and the Dipoleâ€Moment Surface. Angewandte Chemie, 2020, 132, 11496-11504.	1.6	0
10	Anchoring the hydrogen sulfide dimer potential energy surface to juxtapose (H2S)2 with (H2O)2. Journal of Chemical Physics, 2020, 152, 214306.	1.2	9
11	Dissociation energy of the HCNâ‹ ⁻ HF dimer. Chemical Physics Letters, 2020, 748, 137382.	1.2	6
12	Frontispiece: Observation of the Lowâ€Frequency Spectrum of the Water Trimer as a Sensitive Test of the Waterâ€Trimer Potential and the Dipoleâ€Moment Surface. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
13	Observation of the Lowâ€Frequency Spectrum of the Water Trimer as a Sensitive Test of the Waterâ€Trimer Potential and the Dipoleâ€Moment Surface. Angewandte Chemie - International Edition, 2020, 59, 11399-11407.	7.2	16
14	Effect of "X―Ligands on the Photocatalytic Reduction of CO ₂ to CO with Re(pyridylNHC F ₃)(CO) ₃ X Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1844-1851.	1.0	13
15	Cis/Trans Energetics in Epoxide, Thiirane, Aziridine and Phosphirane Containing Cyclopentanols: Effects of Intramolecular OHâ¢O, S, N and P Contacts. Molecules, 2019, 24, 2523.	1.7	2
16	Co-Localization of DNA i-Motif-Forming Sequences and 5-Hydroxymethyl-cytosines in Human Embryonic Stem Cells. Molecules, 2019, 24, 3619.	1.7	3
17	Characterization of Furan- and Thiophene-Containing Bispyridyl Oligomers via Spectroscopic, Electrochemical, and TD-DFT Methods. Journal of Physical Chemistry C, 2019, 123, 15176-15185.	1.5	11
18	Probing non-covalent interactions driving molecular assembly in organo-electronic building blocks. CrystEngComm, 2019, 21, 3151-3157.	1.3	11

#	Article	IF	CITATIONS
19	Computational Investigation on Electronic Structures and Properties of 4,6-Bis(nitroimino)-1,3,5-triazinan-2-one: An Insensitive Munition Compound. Journal of Physical Chemistry A, 2019, 123, 3504-3509.	1.1	4
20	A Raman Spectroscopic and Computational Study of New Aromatic Pyrimidine-Based Halogen Bond Acceptors. Inorganics, 2019, 7, 119.	1.2	6
21	Examination of the structures, energetics, and vibrational frequencies of small sulfurâ€containing prototypical dimers, (H 2 S) 2 and H 2 O/H 2 S. Journal of Computational Chemistry, 2019, 40, 229-236.	1.5	16
22	2-body:Many-body QM:QM study of structures, energetics, and vibrational frequencies for microhydrated halide ions. Molecular Physics, 2019, 117, 1413-1420.	0.8	7
23	Intramolecular Hydrogen Bonding in α-Epoxy Alcohols: A Conformational Analysis of 1,2-Dialkyl-2,3-epoxycyclopentanol Diastereomers. Chemistry Letters, 2018, 47, 156-159.	0.7	4
24	Dissociation Energy of the H ₂ O···HF Dimer. Journal of Physical Chemistry A, 2018, 122, 4902-4908.	1.1	12
25	Hydrogen bonding in the mixed HF/HCl dimer: Is it better to give or receive?. Journal of Computational Chemistry, 2018, 39, 839-843.	1.5	10
26	Systematic Experimental and Computational Studies of Substitution and Hybridization Effects in Solid-State Halogen Bonded Assemblies. Crystal Growth and Design, 2018, 18, 3244-3254.	1.4	20
27	Binding of the atomic cations hydrogen through argon to water and hydrogen sulfide. Physical Chemistry Chemical Physics, 2018, 20, 25967-25973.	1.3	12
28	Communication: Gas phase vibrational spectroscopy of the azide-water complex. Journal of Chemical Physics, 2018, 149, 191101.	1.2	5
29	A Robust Pyridyl-NHC-Ligated Rhenium Photocatalyst for CO2 Reduction in the Presence of Water and Oxygen. Inorganics, 2018, 6, 22.	1.2	18
30	Energetics and Vibrational Signatures of Nucleobase Argyrophilic Interactions. ACS Omega, 2018, 3, 12936-12943.	1.6	4
31	Intermolecular Interactions and Vibrational Perturbations within Mixtures of 1-Ethyl-3-methylimidazolium Thiocyanate and Water. Journal of Physical Chemistry C, 2018, 122, 27673-27680.	1.5	12
32	Quantifying the Effects of Halogen Bonding by Haloaromatic Donors on the Acceptor Pyrimidine. ChemPhysChem, 2017, 18, 1267-1273.	1.0	16
33	Probing Dative and Dihydrogen Bonding in Ammonia Borane with Electronic Structure Computations and Raman under Nitrogen Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 5884-5893.	1.1	22
34	Dissociation in Binary Acid/Base Clusters: An Examination of Inconsistencies Introduced Into the Many-Body Expansion by NaÃ־ve Fragmentation Schemes. Annual Reports in Computational Chemistry, 2017, , 93-115.	0.9	3
35	Big Changes for Small Noncovalent Dimers: Revisiting the Potential Energy Surfaces of (P ₂) ₂ and (PCCP) ₂ with CCSD(T) Optimizations and Vibrational Frequencies. Journal of Chemical Theory and Computation, 2016, 12, 1534-1541.	2.3	3
36	Competition between Hydrophilic and Argyrophilic Interactions in Surface Enhanced Raman Spectroscopy. ChemPhysChem, 2016, 17, 2782-2786.	1.0	14

#	Article	IF	CITATIONS
37	Elucidating the Effects of Fluoro and Nitro Substituents on Halogen Bond Driven Assemblies of Pyridyl-Capped π-Conjugated Molecules. Crystal Growth and Design, 2016, 16, 6648-6653.	1.4	25
38	A Computational and Experimental Study of Thieno[3,4â€b]thiophene as a Proaromatic Ï€â€Bridge in Dyeâ€5ensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 694-703.	1.7	34
39	The onset of electron-induced proton-transfer in hydrated azabenzene cluster anions. Physical Chemistry Chemical Physics, 2016, 18, 704-712.	1.3	14
40	Assessing the accuracy of some popular DFT methods for computing harmonic vibrational frequencies of water clusters. Journal of Chemical Physics, 2015, 143, 214103.	1.2	49
41	Water network-mediated, electron-induced proton transfer in [C5H5N â‹ (H2O)n]â^' clusters. Journal of Chemical Physics, 2015, 143, 144305.	1.2	8
42	Benchmark Structures and Harmonic Vibrational Frequencies Near the CCSD(T) Complete Basis Set Limit for Small Water Clusters: (H ₂ 0) _{<i>n</i>Â=Â2, 3, 4, 5, 6} . Journal of Chemical Theory and Computation, 2015, 11, 2126-2136.	2.3	63
43	<i>Boyd</i> Group Electronegativity Influence on the <i>Parr</i> Global Electrophilicity of <i>Vilsmeier</i> Reagentâ€Đerived Imidates: New Insights toward Improving <i>Mitsunobu</i> Chemistry. Helvetica Chimica Acta, 2015, 98, 582-588.	1.0	0
44	Synergistic effects of halogen bond and π–π interactions in thiophene-based building blocks. RSC Advances, 2015, 5, 82544-82548.	1.7	13
45	Anchoring the potential energy surface of an important atmospheric van der Waals dimer, the H2Oâ‹⁻O2 complex. Computational and Theoretical Chemistry, 2015, 1072, 21-27.	1.1	6
46	Indolizineâ€Based Donors as Organic Sensitizer Components for Dye‧ensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401629.	10.2	71
47	Characterization of the potential energy surfaces of two small but challenging noncovalent dimers: (P ₂) ₂ and (PCCP) ₂ . Journal of Computational Chemistry, 2014, 35, 479-487.	1.5	2
48	Getting down to the Fundamentals of Hydrogen Bonding: Anharmonic Vibrational Frequencies of (HF) ₂ and (H ₂ O) ₂ from Ab Initio Electronic Structure Computations. Journal of Chemical Theory and Computation, 2014, 10, 5426-5435.	2.3	63
49	Characterizing the BP Stretching Vibration in Phosphorusâ€Substituted Phosphine Boranes. ChemPhysChem, 2014, 15, 1867-1871.	1.0	5
50	Wavefunction methods for the accurate characterization of water clusters. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 199-224.	6.2	43
51	Epigenetic Modification, Dehydration, and Molecular Crowding Effects on the Thermodynamics of i-Motif Structure Formation from C-Rich DNA. Biochemistry, 2014, 53, 1586-1594.	1.2	109
52	Photoelectron Spectroscopic and Computational Study of Hydrated Pyrimidine Anions. Journal of Physical Chemistry A, 2014, 118, 11901-11907.	1.1	12
53	Homogeneous and Heterogeneous Noncovalent Dimers of Formaldehyde and Thioformaldehyde: Structures, Energetics, and Vibrational Frequencies. Journal of Physical Chemistry A, 2014, 118, 3376-3385.	1.1	24
54	Peptide Bond Formation via Glycine Condensation in the Gas Phase. Journal of Physical Chemistry B, 2014, 118, 8583-8590.	1.2	17

#	Article	IF	CITATIONS
55	Anchoring the potential energy surface of the nitrogen/water dimer, N2â<¯H2O, with explicitly correlated coupled-cluster computations. Computational and Theoretical Chemistry, 2013, 1021, 109-113.	1.1	11
56	Examination of Tyrosine/Adenine Stacking Interactions in Protein Complexes. Journal of Physical Chemistry B, 2013, 117, 14001-14008.	1.2	25
57	Charge Transfer and Blue Shifting of Vibrational Frequencies in a Hydrogen Bond Acceptor. Journal of Physical Chemistry A, 2013, 117, 5435-5446.	1.1	46
58	<i>N</i> -body:Many-body QM:QM vibrational frequencies: Application to small hydrogen-bonded clusters. Journal of Chemical Physics, 2013, 139, 184113.	1.2	42
59	Basis set dependence of higher-order correlation effects in π-type interactions. Journal of Chemical Physics, 2012, 136, 014103.	1.2	27
60	Hydrocarbon/Water Interactions: Encouraging Energetics and Structures from DFT but Disconcerting Discrepancies for Hessian Indices. Journal of Chemical Theory and Computation, 2012, 8, 1646-1656.	2.3	47
61	Effects of Heterogeneity in Small π-Type Dimers: Homogeneous and Mixed Dimers of Diacetylene and Cyanogen. Journal of Chemical Theory and Computation, 2012, 8, 4279-4284.	2.3	5
62	Vibrational Spectroscopy of N-Methyliminodiacetic Acid (MIDA)-Protected Boronate Ester: Examination of the B–N Dative Bond. Journal of Physical Chemistry A, 2011, 115, 6426-6431.	1.1	16
63	Interstaple Dithiol Cross-Linking in Au ₂₅ (SR) ₁₈ Nanomolecules: A Combined Mass Spectrometric and Computational Study. Journal of the American Chemical Society, 2011, 133, 20258-20266.	6.6	79
64	Accurate Interaction Energies for Problematic Dispersion-Bound Complexes: Homogeneous Dimers of NCCN, P2, and PCCP. Journal of Chemical Theory and Computation, 2011, 7, 2842-2851.	2.3	46
65	Efficient and Accurate Methods for the Geometry Optimization of Water Clusters: Application of Analytic Gradients for the Two-Body:Many-Body QM:QM Fragmentation Method to (H ₂ 0) _{<i>n</i>} , <i>n</i> , <i>n</i> , <i>n</i> , <i>n</i> , <i>n, <i>nn<td>2.3</td><td>53</td></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.3	53
66	Spectroscopic and computational insight into weak noncovalent interactions in crystalline pyrimidine. Chemical Physics Letters, 2011, 501, 319-323.	1.2	22
67	Structures, Energetics and Vibrational Frequency Shifts of Hydrated Pyrimidine. ChemPhysChem, 2011, 12, 3262-3273.	1.0	14
68	Development of a 3-body:many-body integrated fragmentation method for weakly bound clusters and application to water clusters (H2O) <i>n</i> = 3 â^ 10, 16, 17. Journal of Chemical Physics, 2011, 135, 044123.	1.2	68
69	Raman and SERS Spectroscopy of N-Methyliminodiacetic Acid (MIDA)-Protected Boronate Esters. , 2010, ,		1
70	Raman Spectroscopic Investigations of Noncovalent Interactions between Pyrimidine and Hydrogen Bonded Networks. , 2010, , .		0
71	Effects of Hydrogen Bonding on Vibrational Normal Modes of Pyrimidine. Journal of Physical Chemistry A, 2010, 114, 6803-6810.	1.1	49
72	Comparison of polarization consistent and correlation consistent basis sets for noncovalent interactions. International Journal of Quantum Chemistry, 2009, 109, 91-96.	1.0	17

GREGORY S TSCHUMPER

#	Article	IF	CITATIONS
73	CCSD(T) Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures. Journal of Physical Chemistry A, 2009, 113, 3555-3559.	1.1	188
74	Anchoring the potential energy surface of the diacetylene dimer. Molecular Physics, 2009, 107, 923-928.	0.8	7
75	Probing the effects of heterogeneity on delocalized Ï€â⊄Ï€ interaction energies. Physical Chemistry Chemical Physics, 2008, 10, 2775.	1.3	25
76	Probing Phenylalanine/Adenine ï€-Stacking Interactions in Protein Complexes with Explicitly Correlated and CCSD(T) Computations. Journal of Physical Chemistry B, 2008, 112, 14291-14295.	1.2	46
77	Reliable structures and energetics for two new delocalized Ï€â< [–] ï€ prototypes: cyanogen dimer and diacetylene dimer. Physical Chemistry Chemical Physics, 2007, 9, 1550-1558.	1.3	11
78	Analytic gradients for the multicentred integrated QM:QM method for weakly bound clusters: efficient and accurate 2-body:many-body geometry optimizations. Molecular Physics, 2007, 105, 2777-2782.	0.8	32
79	Intrinsic conformational preferences of and an anomeric-like effect in 1-substituted silacyclohexanes. International Journal of Quantum Chemistry, 2007, 107, 2261-2265.	1.0	37
80	Characterizing the Potential Energy Surface of the Water Dimer with DFT:Â Failures of Some Popular Functionals for Hydrogen Bonding. Journal of Physical Chemistry A, 2006, 110, 7268-7271.	1.1	48
81	Reliable Electron Affinities of Perfluorocyclopropane and Perfluorocyclobutane from Convergent ab Initio Computations. Journal of Physical Chemistry A, 2006, 110, 1975-1977.	1.1	7
82	Energetics of Oxaspirocycle Prototypes:  1,7-Dioxaspiro[5.5]undecane and 1,7,9-Trioxadispiro[5.1.5.3]hexadecane. Journal of Organic Chemistry, 2006, 71, 9212-9216.	1.7	7
83	Multicentered integrated QM:QM methods for weakly bound clusters: An efficient and accurate 2-body:many-body treatment of hydrogen bonding and van der Waals interactions. Chemical Physics Letters, 2006, 427, 185-191.	1.2	64
84	A systematic assessment of density functionals and ONIOM schemes for the study of hydrogen bonding between water and the side chains of serine, threonine, asparagine, and glutamine. Computational and Theoretical Chemistry, 2006, 771, 65-71.	1.5	9
85	Integrated quantum mechanical approaches for extended ï€ systems: Multicentered QM/QM studies of the cyanogen and diacetylene trimers. Chemical Physics Letters, 2005, 407, 362-367.	1.2	39
86	Multicentred QM/QM methods for overlapping model systems. Molecular Physics, 2005, 103, 309-315.	0.8	41
87	Computational and ESR Studies of Electron Attachment to Decafluorocyclopentane, Octafluorocyclobutane, and Hexafluorocyclopropane:Â Electron Affinities of the Molecules and the Structures of Their Stable Negative Ions as Determined from13C and19F Hyperfine Coupling Constants. Iournal of the American Chemical Society, 2005, 127, 10573-10583.	6.6	18
88	Intrinsic Conformational Preferences of Substituted Cyclohexanes and Tetrahydropyrans Evaluated at the CCSD(T) Complete Basis Set Limit:Â Implications for the Anomeric Effect. Journal of Physical Chemistry A, 2005, 109, 11073-11079.	1.1	58
89	Anchoring the potential energy surface of the cyclic water trimer. Journal of Chemical Physics, 2004, 121, 11023.	1.2	68
90	Extending the ONIOM integrated MO/MO approach to hydrogen bonding in biologic systems: Serine-water and threonine-water dimers. International Journal of Quantum Chemistry, 2004, 96, 294-302.	1.0	8

GREGORY S TSCHUMPER

#	Article	IF	CITATIONS
91	Real versus artifactual symmetry-breaking effects in Hartree–Fock, density-functional, and coupled-cluster methods. Journal of Chemical Physics, 2004, 120, 7298-7306.	1.2	68
92	Ab Initio Studies of π···I€ Interactions: The Effects of Quadruple Excitationsâ€. Journal of Physical Chemistry A, 2004, 108, 2941-2948.	1.1	84
93	A multicentered approach to integrated QM/QM calculations. Applications to multiply hydrogen bonded systems. Journal of Computational Chemistry, 2003, 24, 1563-1568.	1.5	61
94	Concerning the stability of dichlorodiazene. Chemical Physics Letters, 2003, 370, 418-424.	1.2	3
95	Ab initio theoretical studies of potential energy surfaces in the photodissociation of the vinyl radical. I. Ãf state dissociation. Journal of Chemical Physics, 2003, 119, 6524-6538.	1.2	9
96	An Alternative Mechanism for the Dimerization of Formic Acid. Journal of Physical Chemistry A, 2003, 107, 10208-10216.	1.1	30
97	Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses. Journal of Chemical Physics, 2002, 116, 690-701.	1.2	262
98	An ab Initio Excursion on the Lowest 18 Electronic Surfaces of the NCl + NCl System:  Some Insight into the Long-Range Self-Quenching Pathways of the First Excited State of NCl. Journal of Physical Chemistry A, 2002, 106, 8453-8460.	1.1	4
99	Synthesis of the ABC Ring System of Azaspiracid. 2. A Systematic Study into the Effect of C16 and C17 Substitution on Bis-spirocyclization. Organic Letters, 2002, 4, 2181-2184.	2.4	33
100	Atomic and Molecular Electron Affinities:  Photoelectron Experiments and Theoretical Computations. Chemical Reviews, 2002, 102, 231-282.	23.0	1,152
101	Gauging the applicability of ONIOM (MO/MO) methods to weak chemical interactions in large systems: hydrogen bonding in alcohol dimers. Computational and Theoretical Chemistry, 2002, 592, 137-147.	1.5	52
102	Superconvergent Perturbation Theory for an Anharmonic Oscillator. Journal of Mathematical Chemistry, 2002, 31, 105-120.	0.7	7
103	Chemically accurate conformational energies for aziridine-2-carbonitrile. Journal of Chemical Physics, 2001, 114, 225.	1.2	6
104	Hydrogen Bonding in Alcohol Clusters:  A Comparative Study by Infrared Cavity Ringdown Laser Absorption Spectroscopy. Journal of Physical Chemistry A, 2000, 104, 1423-1429.	1.1	105
105	Electron affinities of the oxides of aluminum, silicon, phosphorus, sulfur, and chlorine. Journal of Chemical Physics, 1999, 110, 6240-6245.	1.2	44
106	Subtle basis set effects on hydrogen bonded systems. Molecular Physics, 1999, 96, 493-504.	0.8	26
107	Assignment of the infrared spectra of the methanol trimer. Journal of Chemical Physics, 1999, 111, 3027-3034.	1.2	37
108	A comparison between the CISD[TQ] wave function and other highly correlated methods: Molecular geometry and harmonic vibrational frequencies of MgH2. Journal of Chemical Physics, 1998, 108, 7511-7515.	1.2	13

#	Article	IF	CITATIONS
109	A high level theoretical investigation of the cyclic hydrogen fluoride trimer. Journal of Chemical Physics, 1997, 106, 9627-9633.	1.2	34
110	Predicting electron affinities with density functional theory: Some positive results for negative ions. Journal of Chemical Physics, 1997, 107, 2529-2541.	1.2	114
111	The hydroperoxyl radical dimer: Triplet ring or singlet string?. Journal of Chemical Physics, 1997, 106, 5102-5108.	1.2	24
112	Structures, thermochemistry, and electron affinities of the PFn and PFâ^'n series, n=1–6. Journal of Chemical Physics, 1996, 104, 3676-3683.	1.2	76
113	Fundamental vibrational frequencies of isolated 2-phosphaethynolate and 2-phosphaethynthiolate anions: OCP–Âand SCP–. Molecular Physics, 0, , e1967495.	0.8	1
114	Subtle basis set effects on hydrogen bonded systems. , 0, .		1
115	Correlation of Solid-State Order to Optoelectronic Behavior in Heterocyclic Oligomers. CrystEngComm, 0, , .	1.3	2