Yumin Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4278522/publications.pdf

Version: 2024-02-01

38	1,952	23	39
papers	citations	h-index	g-index
39	39	39	2114
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy and Environmental Science, 2019, 12, 3328-3337.	15.6	337
2	(Semi)ladder-Type Bithiophene Imide-Based All-Acceptor Semiconductors: Synthesis, Structure–Property Correlations, and Unipolar n-Type Transistor Performance. Journal of the American Chemical Society, 2018, 140, 6095-6108.	6.6	178
3	Highâ€Performance Allâ€Polymer Solar Cells Enabled by an nâ€Type Polymer Based on a Fluorinated Imideâ€Functionalized Arene. Advanced Materials, 2019, 31, e1807220.	11.1	154
4	Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 16632-16643.	6.6	154
5	Transition metal-catalysed molecular n-doping of organic semiconductors. Nature, 2021, 599, 67-73.	13.7	152
6	Headâ€ŧoâ€Head Linkage Containing Bithiopheneâ€Based Polymeric Semiconductors for Highly Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 9969-9977.	11,1	93
7	A New Wide Bandgap Donor Polymer for Efficient Nonfullerene Organic Solar Cells with a Large Openâ€Circuit Voltage. Advanced Science, 2019, 6, 1901773.	5.6	61
8	Engineering of dendritic dopant-free hole transport molecules: enabling ultrahigh fill factor in perovskite solar cells with optimized dendron construction. Science China Chemistry, 2021, 64, 41-51.	4.2	55
9	Enhancing Polymer Photovoltaic Performance via Optimized Intramolecular Ester-Based Noncovalent SulfurÂ-Â-Â-Oxygen Interactions. Macromolecules, 2018, 51, 3874-3885.	2.2	53
10	Imideâ€Functionalized Heteroareneâ€Based nâ€Type Terpolymers Incorporating Intramolecular Noncovalent Sulfurâ^™â^™â^™Oxygen Interactions for Additiveâ€Free Allâ€Polymer Solar Cells. Advanced Functional Materials, 2019, 29, 1903970.	, 7.8	53
11	Boosting Efficiency and Stability of Organic Solar Cells Using Ultralow-Cost BiOCl Nanoplates as Hole Transporting Layers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33505-33514.	4.0	49
12	Triimideâ€Functionalized nâ€Type Polymer Semiconductors Enabling Allâ€Polymer Solar Cells with Power Conversion Efficiencies Approaching 9%. Solar Rrl, 2019, 3, 1900107.	3.1	43
13	Fluorine Substituted Bithiophene Imideâ∈Based nâ∈Type Polymer Semiconductor for Highâ∈Performance Organic Thinâ∈Film Transistors and Allâ∈Polymer Solar Cells. Solar Rrl, 2019, 3, 1800265.	3.1	42
14	Quinoxaline-Based Wide Band Gap Polymers for Efficient Nonfullerene Organic Solar Cells with Large Open-Circuit Voltages. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23235-23246.	4.0	39
15	Improved photovoltaic performance of a nonfullerene acceptor based on a benzo[⟨i⟩b⟨/i⟩]thiophene fused end group with extended Ï€-conjugation. Journal of Materials Chemistry A, 2019, 7, 9822-9830.	5.2	38
16	Head-to-Head Linkage Containing Dialkoxybithiophene-Based Polymeric Semiconductors for Polymer Solar Cells with Large Open-Circuit Voltages. Macromolecules, 2017, 50, 137-150.	2.2	37
17	Backbone Conformation Tuning of Carboxylate-Functionalized Wide Band Gap Polymers for Efficient Non-Fullerene Organic Solar Cells. Macromolecules, 2019, 52, 341-353.	2.2	37
18	Phthalimide-Based Wide Bandgap Donor Polymers for Efficient Non-Fullerene Solar Cells. Macromolecules, 2017, 50, 8928-8937.	2.2	31

#	Article	IF	Citations
19	New Benzo [1,2- <i>d</i> d â \in 2] bis ([1,2,3] thiadiazole) (iso-BBT)-Based Polymers for Application in Transistors and Solar Cells. Chemistry of Materials, 2019, 31, 6519-6529.	3.2	31
20	Cyano-Substituted Head-to-Head Polythiophenes: Enabling High-Performance n-Type Organic Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10089-10098.	4.0	29
21	Performance Enhancement of All-Inorganic Perovskite Quantum Dots (CsPbX ₃) by UV-NIR Laser Irradiation. Journal of Physical Chemistry C, 2019, 123, 4502-4511.	1.5	29
22	Imide-functionalized acceptor–acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 13754-13762.	5.2	28
23	2,1,3-Benzothiadiazole-5,6-dicarboxylicimide-Based Polymer Semiconductors for Organic Thin-Film Transistors and Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42167-42178.	4.0	25
24	Dithienylbenzodiimide: a new electron-deficient unit for n-type polymer semiconductors. Journal of Materials Chemistry C, 2017, 5, 9559-9569.	2.7	24
25	Cyano-substituted benzochalcogenadiazole-based polymer semiconductors for balanced ambipolar organic thin-film transistors. Polymer Chemistry, 2018, 9, 3873-3884.	1.9	24
26	Aggregation Strength Tuning in Difluorobenzoxadiazole-Based Polymeric Semiconductors for High-Performance Thick-Film Polymer Solar Cells. ACS Applied Materials & Emp; Interfaces, 2018, 10, 21481-21491.	4.0	22
27	Two Compatible Polymer Donors Enabling Ternary Organic Solar Cells with a Small Nonradiative Energy Loss and Broad Composition Tolerance. Solar Rrl, 2020, 4, 2000396.	3.1	22
28	1,4-Di(3-alkoxy-2-thienyl)-2,5-difluorophenylene: A Building Block Enabling High-Performance Polymer Semiconductors with Increased Open-Circuit Voltages. Macromolecules, 2018, 51, 5352-5363.	2.2	19
29	Backbone Coplanarity Tuning of 1,4-Di(3-alkoxy-2-thienyl)-2,5-difluorophenylene-Based Wide Bandgap Polymers for Efficient Organic Solar Cells Processed from Nonhalogenated Solvent. ACS Applied Materials & Interfaces, 2019, 11, 31119-31128.	4.0	18
30	Thiazolothienyl imide-based wide bandgap copolymers for efficient polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 11142-11151.	2.7	18
31	Additiveâ€Free Nonâ€Fullerene Organic Solar Cells. ChemElectroChem, 2019, 6, 5547-5562.	1.7	11
32	Side chain engineering of naphthalene diimide–bithiopheneâ€based polymer acceptors in allâ€polymer solar cells. Journal of Polymer Science Part A, 2017, 55, 3679-3689.	2.5	10
33	Fused Bithiophene Imide Oligomer and Diketopyrrolopyrrole Copolymers for nâ€Type Thinâ€Film Transistors. Macromolecular Rapid Communications, 2019, 40, e1900394.	2.0	9
34	Polymer semiconductors incorporating head-to-head linked 4-alkoxy-5-(3-alkylthiophen-2-yl)thiazole. RSC Advances, 2018, 8, 35724-35734.	1.7	6
35	Terpolymer acceptors based on bithiophene imide for all-polymer solar cells. Dyes and Pigments, 2021, 186, 109049.	2.0	5
36	Fine-tuning head-to-head bithiophene-difluorobenzothiadiazole polymers for photovoltaics via side-chain engineering. Organic Electronics, 2019, 68, 135-142.	1.4	5

YUMIN TANG

#	Article	IF	CITATIONS
37	Isomerization enabling near-infrared electron acceptors. RSC Advances, 2019, 9, 37287-37291.	1.7	2
38	Effects of the Electron-Deficient Third Components in n-Type Terpolymers on Morphology and Performance of All-Polymer Solar Cells. Organic Materials, 2020, 02, 214-222.	1.0	2