Zoë Migicovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4277836/publications.pdf

Version: 2024-02-01

304368 329751 41 1,808 22 37 citations h-index g-index papers 55 55 55 2169 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel Organisms. G3: Genes, Genomes, Genetics, 2015, 5, 2383-2390.	0.8	407
2	Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops. Frontiers in Plant Science, 2017, 8, 460.	1.7	116
3	Genome to Phenome Mapping in Apple Using Historical Data. Plant Genome, 2016, 9, plantgenome2015.11.0113.	1.6	102
4	Patterns of genomic and phenomic diversity in wine and table grapes. Horticulture Research, 2017, 4, 17035.	2.9	87
5	Apple whole genome sequences: recent advances and new prospects. Horticulture Research, 2019, 6, 59.	2.9	77
6	Genomeâ€Wide Association Studies in Apple Reveal Loci for Aroma Volatiles, Sugar Composition, and Harvest Date. Plant Genome, 2019, 12, 180104.	1.6	70
7	Epigenetic Memory in Mammals. Frontiers in Genetics, 2011, 2, 28.	1.1	67
8	Transgenerational phenotypic and epigenetic changes in response to heat stress in <i>Arabidopsis thaliana </i> . Plant Signaling and Behavior, 2014, 9, e27971.	1.2	66
9	Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace. Frontiers in Plant Science, 2018, 9, 553.	1.7	62
10	Genomic consequences of apple improvement. Horticulture Research, 2021, 8, 9.	2.9	53
11	Transgenerational adaptation to heavy metal salts in Arabidopsis. Frontiers in Plant Science, 2011, 2, 91.	1.7	52
12	Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Horticulture Research, 2019, 6, 107.	2.9	50
13	LinkImputeR: user-guided genotype calling and imputation for non-model organisms. BMC Genomics, 2017, 18, 523.	1.2	48
14	Morphometrics Reveals Complex and Heritable Apple Leaf Shapes. Frontiers in Plant Science, 2017, 8, 2185.	1.7	46
15	Prediction of Cacao (Theobroma cacao) Resistance to Moniliophthora spp. Diseases via Genome-Wide Association Analysis and Genomic Selection. Frontiers in Plant Science, 2018, 9, 343.	1.7	43
16	Genomic ancestry estimation quantifies use of wild species in grape breeding. BMC Genomics, 2016, 17, 478.	1.2	40
17	Rootstock effects on scion phenotypes in a â€~Chambourcin' experimental vineyard. Horticulture Research, 2019, 6, 64.	2.9	37
18	Population structure, relatedness and ploidy levels in an apple gene bank revealed through genotyping-by-sequencing. PLoS ONE, 2018, 13, e0201889.	1.1	35

#	Article	IF	CITATIONS
19	Using Living Germplasm Collections to Characterize, Improve, and Conserve Woody Perennials. Crop Science, 2019, 59, 2365-2380.	0.8	33
20	Changes to DNA methylation and homologous recombination frequency in the progeny of stressed plants. Biochemistry and Cell Biology, 2013, 91, 1-5.	0.9	30
21	Composite modeling of leaf shape along shoots discriminates <i>Vitis</i> species better than individual leaves. Applications in Plant Sciences, 2020, 8, e11404.	0.8	29
22	Apple Ripening Is Controlled by a NAC Transcription Factor. Frontiers in Genetics, 2021, 12, 671300.	1.1	29
23	Veinâ€toâ€blade ratio is an allometric indicator of leaf size and plasticity. American Journal of Botany, 2021, 108, 571-579.	0.8	28
24	Cannabis labelling is associated with genetic variation in terpene synthase genes. Nature Plants, 2021, 7, 1330-1334.	4.7	22
25	Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana. Plant Signaling and Behavior, 2014, 9, e976490.	1.2	20
26	Quantifying apple diversity: A phenomic characterization of Canada's Apple Biodiversity Collection. Plants People Planet, 2021, 3, 747-760.	1.6	20
27	Grapevine rootstocks affect growthâ€related scion phenotypes. Plant Direct, 2021, 5, e00324.	0.8	17
28	Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations. Sustainability, 2019, 11, 2787.	1.6	12
29	Multi-dimensional leaf phenotypes reflect root system genotype in grafted grapevine over the growing season. GigaScience, $2021, 10, .$	3.3	11
30	Transgenerational inheritance of epigenetic response to cold in Arabidopsis thaliana. Biocatalysis and Agricultural Biotechnology, 2015, 4, 1-10.	1.5	10
31	Genome-Wide Association Study Reveals a Genomic Region Associated with Mite-Recruitment Phenotypes in the Domesticated Grapevine (Vitis vinifera). Genes, 2021, 12, 1013.	1.0	8
32	Epigenetic Modifications during Angiosperm Gametogenesis. Frontiers in Plant Science, 2012, 3, 20.	1.7	7
33	A Characterization of a Cool-Climate Organic Vineyard's Microbiome. Phytobiomes Journal, 2022, 6, 69-82.	1.4	7
34	Phenotypic divergence between the cultivated apple (Malus domestica) and its primary wild progenitor (Malus sieversii). PLoS ONE, 2022, 17, e0250751.	1.1	7
35	Saltmarsh rhizosphere fungal communities vary by sediment type and dominant plant species cover in Nova Scotia, Canada. Environmental Microbiology Reports, 2021, 13, 458-463.	1.0	6
36	Increases in vein length compensate for leaf area lost to lobing in grapevine. American Journal of Botany, 2022, 109, 1063-1073.	0.8	5

Zoë Migicovsky

#	Article	IF	CITATIONS
37	Cider and dessert apples: What is the difference?. Plants People Planet, 0, , .	1.6	4
38	Tasting improvement in fruit flavor using genomics. New Phytologist, 2020, 226, 1539-1540.	3 . 5	2
39	An inventory of crop wild relatives and wildâ€utilized plants in Canada. Crop Science, 0, , .	0.8	2
40	Fungal symbionts of endangered < i> Crocanthemum canadense < /i> (Cistaceae) in Nova Scotia. Botany, 2021, 99, 403-419.	0.5	1
41	Modeling Early Indicators of Grapevine Physiology Using Hyperspectral Imaging and Partial Least Squares Regression (PLSR). , 2020, , .		0