E Jane Albert Hubbard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/427740/publications.pdf

Version: 2024-02-01

41 papers 2,089 citations

279798 23 h-index 289244 40 g-index

45 all docs

45 docs citations

45 times ranked

1476 citing authors

#	Article	IF	CITATIONS
1	Microbial byproducts determine reproductive fitness of free-living and parasitic nematodes. Cell Host and Microbe, 2022, 30, 786-797.e8.	11.0	9
2	Modeling the C. elegans germline stem cell genetic network using automated reasoning. BioSystems, 2022, 217, 104672.	2.0	2
3	DAF-18/PTEN inhibits germline zygotic gene activation during primordial germ cell quiescence. PLoS Genetics, 2021, 17, e1009650.	3.5	8
4	Germline Stem and Progenitor Cell Aging in C. elegans. Frontiers in Cell and Developmental Biology, 2021, 9, 699671.	3.7	12
5	A Genome-Wide RNAi Screen for Enhancers of a Germline Tumor Phenotype Caused by Elevated GLP-1/Notch Signaling in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 2020, 10, 4323-4334.	1.8	2
6	Insulin/IGF Signaling and Vitellogenin Provisioning Mediate Intergenerational Adaptation to Nutrient Stress. Current Biology, 2019, 29, 2380-2388.e5.	3.9	48
7	Ectopic Germ Cells Can Induce Niche-like Enwrapment by Neighboring Body Wall Muscle. Current Biology, 2019, 29, 823-833.e5.	3.9	16
8	Biology of the <i>Caenorhabditis elegans</i> Germline Stem Cell System. Genetics, 2019, 213, 1145-1188.	2.9	94
9	The DSL ligand APX-1 is required for normal ovulation in C. elegans. Developmental Biology, 2018, 435, 162-169.	2.0	5
10	Functional Interactions Between <i>rsks-1</i> /S6K, <i>glp-1</i> /Notch, and Regulators of <i>Caenorhabditis elegans</i> Fertility and Germline Stem Cell Maintenance. G3: Genes, Genomes, Genetics, 2018, 8, 3293-3309.	1.8	24
11	Linking the environment, DAF-7/TGF \hat{l}^2 signaling and LAG-2/DSL ligand expression in the germline stem cell niche. Development (Cambridge), 2017, 144, 2896-2906.	2.5	42
12	How computational models contribute to our understanding of the germ line. Molecular Reproduction and Development, 2016, 83, 944-957.	2.0	3
13	Cell cycle features of C. elegans germline stem/progenitor cells vary temporally and spatially. Developmental Biology, 2016, 409, 261-271.	2.0	27
14	Mechano-logical model of <i>C. elegans</i> germ line suggests feedback on the cell cycle. Development (Cambridge), 2015, 142, 3902-11.	2.5	28
15	Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors. PLoS ONE, 2015, 10, e0127862.	2.5	11
16	Non-autonomous DAF-16/FOXO activity antagonizes age-related loss of C. elegans germline stem/progenitor cells. Nature Communications, 2015, 6, 7107.	12.8	45
17	Irises. Worm, 2014, 3, e29041.	1.0	4
18	FLP/FRT and Cre/lox recombination technology in C. elegans. Methods, 2014, 68, 417-424.	3.8	45

#	Article	lF	CITATIONS
19	Diet and Genetics: Trp-ing Over Food Sensitivity. Current Biology, 2013, 23, R326-R327.	3.9	1
20	Physiological Control of Germline Development. Advances in Experimental Medicine and Biology, 2013, 757, 101-131.	1.6	53
21	A model of stem cell population dynamics: in silico analysis and in vivo validation. Development (Cambridge), 2012, 139, 47-56.	2.5	18
22	S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells. Development (Cambridge), 2012, 139, 859-870.	2.5	83
23	Sensory Regulation of the C.Âelegans Germline through TGF-Î ² -Dependent Signaling in the Niche. Current Biology, 2012, 22, 712-719.	3.9	132
24	Insulin and Germline Proliferation in Caenorhabditis elegans. Vitamins and Hormones, 2011, 87, 61-77.	1.7	18
25	Somaâ€germline interactions that influence germline proliferation in <i>Caenorhabditis elegans</i> Developmental Dynamics, 2010, 239, 1449-1459.	1.8	28
26	Insulin signaling promotes germline proliferation in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 671-680.	2.5	185
27	MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in <i>C. elegans</i> Development (Cambridge), 2009, 136, 2223-2234.	2.5	117
28	A "latent niche―mechanism for tumor initiation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11617-11622.	7.1	77
29	Characterization of the <i>Caenorhabditis elegansIslet</i> LIMâ€homeodomain ortholog, <i>limâ€7</i> . FEBS Letters, 2009, 583, 456-464.	2.8	25
30	A scenario-based approach to modeling development: A prototype model of C. elegans vulval fate specification. Developmental Biology, 2008, 323, 1-5.	2.0	32
31	A "FLP-Out―System for Controlled Gene Expression in <i>Caenorhabditis elegans</i> . Genetics, 2008, 180, 103-119.	2.9	72
32	<i>Caenorhabditis elegans</i> germ line: A model for stem cell biology. Developmental Dynamics, 2007, 236, 3343-3357.	1.8	84
33	Quantitative analysis of germline mitosis in adult C. elegans. Developmental Biology, 2006, 292, 142-151.	2.0	65
34	Alterations in ribosome biogenesis cause specific defects in C. elegans hermaphrodite gonadogenesis. Developmental Biology, 2006, 298, 45-58.	2.0	51
35	Autosomal Genes of Autosomal/X-Linked Duplicated Gene Pairs and Germ-Line Proliferation in Caenorhabditis elegans. Genetics, 2005, 169, 1997-2011.	2.9	43
36	Computational insights into Caenorhabditis elegans vulval development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1951-1956.	7.1	86

#	Article	IF	CITATIONS
37	Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line. Developmental Biology, 2005, 279, 322-335.	2.0	103
38	C. elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line. Development (Cambridge), 2004, 131, 1267-1278.	2.5	45
39	Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline. Developmental Biology, 2004, 268, 342-357.	2.0	145
40	The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Developmental Biology, 2003, 259, 336-350.	2.0	61
41	Genetic Analysis of <i>Caenorhabditis elegans glp-1</i> Mutants Suggests Receptor Interaction or Competition. Genetics, 2003, 163, 115-132.	2.9	135