
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4277270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A fuzzy solution of wave equation by <scp>FFSâ€transform</scp> . Numerical Methods for Partial Differential Equations, 2024, 40, .	3.6	3
2	A computational method for nonlinear Burgers' equation using quartic-trigonometric tension B-splines. Mathematical Sciences, 2024, 18, 17-28.	1.7	0
3	A new method for solving linear programming problems using Z-numbers' ranking. Mathematical Sciences, 2023, 17, 121-131.	1.7	5
4	Finite-time stability of mild solution to time-delay fuzzy fractional differential systems under granular computing. Granular Computing, 2023, 8, 223-239.	8.0	5
5	State feedback control for fractional differential equation system in the space of linearly correlated fuzzy numbers. Fuzzy Sets and Systems, 2023, 453, 164-191.	2.7	3
6	Fuzzy fractional diffusion processes and drug release. Fuzzy Sets and Systems, 2022, 436, 82-101.	2.7	14
7	A straightforward approach for solving dual fuzzy linear systems. Fuzzy Sets and Systems, 2022, 435, 89-106.	2.7	3
8	Reproducing kernel method to solve non-local fractional boundary value problem. Mathematical Sciences, 2022, 16, 261-268.	1.7	4
9	An Estimation of the Solution of First Order Fuzzy Differential Equations. Studies in Fuzziness and Soft Computing, 2022, , 115-141.	0.8	0
10	Solving a fuzzy fractional diffusion model for cancer tumor by using fuzzy transforms. Fuzzy Sets and Systems, 2022, 443, 198-220.	2.7	6
11	Generalized Hukuhara conformable fractional derivative and its application to fuzzy fractional partial differential equations. Soft Computing, 2022, 26, 2135-2146.	3.6	2
12	A method for solving bipolar fuzzy complex linear systems with real and complex coefficients. Soft Computing, 2022, 26, 2157-2178.	3.6	12
13	A new method for the solution of fully fuzzy linear programming models. Computational and Applied Mathematics, 2022, 41, .	2.2	9
14	A numerical method for approximating the solution of fuzzy fractional optimal control problems in caputo sense using legendre functions. Journal of Intelligent and Fuzzy Systems, 2022, 43, 3827-3858.	1.4	1
15	The Exact Solutions of the Conformable Time-Fractional Modified Nonlinear Schrödinger Equation by the Trial Equation Method and Modified Trial Equation Method. Advances in Mathematical Physics, 2022, 2022, 1-11.	0.8	15
16	Solving fully fuzzy linear system: A new solution concept. Information Sciences, 2022, 589, 608-635.	6.9	8
17	Introducing a trapezoidal interval type-2 fuzzy regression model. Journal of Intelligent and Fuzzy Systems, 2022, 42, 1381-1403.	1.4	1
18	A new effective approximate multiplication operation on LR fuzzy numbers and its application. Soft Computing, 2022, 26, 4103-4113.	3.6	4

#	Article	IF	CITATIONS
19	An efficient numerical method for solving m-polar fuzzy initial value problems. Computational and Applied Mathematics, 2022, 41, 1.	2.2	7
20	Modified grasshopper optimization algorithm optimized adaptive fuzzy lead-lag controller for coordinated design of FACTS controller with PSS. Journal of Intelligent and Fuzzy Systems, 2022, , 1-20.	1.4	1
21	Fuzzy Fractional Differential Operators and Equations. Studies in Fuzziness and Soft Computing, 2021, , .	0.8	25
22	Computational procedure for solving fuzzy equations. Soft Computing, 2021, 25, 2703-2717.	3.6	4
23	A Numerical Method to Solve Fuzzy Fractional Optimal Control Problems Using Legendre Basis Functions. New Mathematics and Natural Computation, 2021, 17, 63-90.	0.7	1
24	A study on the fuzzy parabolic Volterra partial integro-differential equations. Journal of Intelligent and Fuzzy Systems, 2021, 40, 1639-1654.	1.4	3
25	Numerical solution of bipolar fuzzy initial value problem. Journal of Intelligent and Fuzzy Systems, 2021, 40, 1309-1341.	1.4	20
26	Solving Riccati Fuzzy Differential Equations. New Mathematics and Natural Computation, 2021, 17, 29-43.	0.7	3
27	Estimation of Failure Using Fault Tree Analysis Based on New Operations on LR-Type Flat Fuzzy Numbers. New Mathematics and Natural Computation, 2021, 17, 153-174.	0.7	5
28	A Study of Fuzzy Methods for Solving System of Fuzzy Differential Equations. New Mathematics and Natural Computation, 2021, 17, 1-27.	0.7	10
29	Providing a model for predicting futures contract of gold coin price by using models based on Z-numbers. Mathematical Sciences, 2021, 15, 215-228.	1.7	2
30	Estimation of Returns to Scale of Units Under Evaluation with Integer Data Using Non-radial Models in Data Envelopment Analysis. Advances in Intelligent Systems and Computing, 2021, , 572-580.	0.6	0
31	Analytical solutions of \$ q \$-fractional differential equations with proportional derivative. AIMS Mathematics, 2021, 6, 5737-5749.	1.6	0
32	IMPLEMENTING REPRODUCING KERNEL METHOD TO SOLVE SINGULARLY PERTURBED CONVECTION-DIFFUSION PARABOLIC PROBLEMS. Mathematical Modelling and Analysis, 2021, 26, 116-134.	1.5	7
33	Methods for solving LR-bipolar fuzzy linear systems. Soft Computing, 2021, 25, 85-108.	3.6	24
34	A New Model for Ranking Z-numbers to Make Decisions with High Sensitivity. Advances in Intelligent Systems and Computing, 2021, , 328-342.	0.6	0
35	A New Method for Ranking of Z-Numbers Based on Magnitude Value. Advances in Intelligent Systems and Computing, 2021, , 841-850.	0.6	2
36	A new Jacobi Tau method for fuzzy fractional Fredholm nonlinear integro-differential equations. Soft Computing, 2021, 25, 5855-5865.	3.6	3

#	Article	IF	CITATIONS
37	New Method for Numerical Solution of Z-Fractional Differential Equations. New Mathematics and Natural Computation, 2021, 17, 45-61.	0.7	1
38	An efficient method to solve fuzzy Volterra integral equations using Fibonacci polynomials. Journal of Intelligent and Fuzzy Systems, 2021, 40, 9899-9914.	1.4	0
39	Fuzzy Hypotheses Testing in the Framework of Type-2 Fuzzy Numbers. New Mathematics and Natural Computation, 2021, 17, 655-690.	0.7	Ο
40	Fully Pythagorean fuzzy linear programming problems with equality constraints. Computational and Applied Mathematics, 2021, 40, 1.	2.2	28
41	A new fractional dynamic cobweb model based on nonsingular kernel derivatives. Chaos, Solitons and Fractals, 2021, 145, 110755.	5.1	13
42	Numerical simulations of reaction–diffusion systems in biological and chemical mechanisms with quartic-trigonometric B-splines. Computational and Applied Mathematics, 2021, 40, 1.	2.2	5
43	A Runge–Kutta numerical method to approximate the solution of bipolar fuzzy initial value problems. Computational and Applied Mathematics, 2021, 40, 1.	2.2	9
44	Reproducing kernel method to solve fractional delay differential equations. Applied Mathematics and Computation, 2021, 400, 126095.	2.2	9
45	An improved numerical iterative method for solving nonlinear fuzzy Fredholm integral equations via Picard's method and generalized quadrature rule. Computational and Applied Mathematics, 2021, 40, 1.	2.2	4
46	Interval type-2 fuzzy least-squares estimation to formulate a regression model based on a new outlierÂdetection method using a new distance. Computational and Applied Mathematics, 2021, 40, 1.	2.2	1
47	Exploring the Main Effect of e-Banking on the Banking Industry Concentration Degree on Predicting the Future of the Banking Industry: A Case Study. Advances in Fuzzy Systems, 2021, 2021, 1-14.	0.9	1
48	LR-type fully Pythagorean fuzzy linear programming problems with equality constraints. Journal of Intelligent and Fuzzy Systems, 2021, 41, 1975-1992.	1.4	18
49	A New Technique to Solve Transportation Problems Using De-Pythagorean Value in Generalized Interval Valued Pythagorean Environment. International Journal of Fuzzy System Applications, 2021, 10, 57-78.	0.7	0
50	The Fuzzy Arithmetic Operations of Transmission Average on Pseudo-Hexagonal Fuzzy Numbers and Its Application in Fuzzy System Reliability Analysis. Fuzzy Information and Engineering, 2021, 13, 58-78.	1.7	7
51	On the properties and applications of fuzzy analytic equations. Fuzzy Sets and Systems, 2021, , .	2.7	1
52	Uncertain Information and Linear Systems. Studies in Systems, Decision and Control, 2020, , .	1.0	12
53	On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach. Chaos, Solitons and Fractals, 2020, 130, 109397.	5.1	57
54	Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space. Applied Numerical Mathematics, 2020, 151, 27-39.	2.1	21

#	Article	IF	CITATIONS
55	Reproducing kernel method to solve parabolic partial differential equations with nonlocal conditions. Numerical Methods for Partial Differential Equations, 2020, 36, 1758-1772.	3.6	8
56	Certain methods to solve bipolar fuzzy linear system of equations. Computational and Applied Mathematics, 2020, 39, 1.	2.2	11
57	LU Decomposition method to solve bipolar fuzzy linear systems. Journal of Intelligent and Fuzzy Systems, 2020, 39, 3329-3349.	1.4	5
58	Conception and Implementation of a New Data-Driven Fuzzy Method for Reliability and Safety Analysis. New Mathematics and Natural Computation, 2020, 16, 339-361.	0.7	6
59	On the stability for the fuzzy initial value problem. Journal of Intelligent and Fuzzy Systems, 2020, 39, 7747-7755.	1.4	0
60	A Fuzzy Method for Solving Fuzzy Fractional Differential Equations Based on the Generalized Fuzzy Taylor Expansion. Mathematics, 2020, 8, 2166.	2.2	9
61	Solving First-Order Differential Equations of Z-Numbers' Initial Value Using Radial Basic Function. International Journal of Differential Equations, 2020, 2020, 1-11.	0.8	0
62	On the rectangular fuzzy complex linear systems. Applied Soft Computing Journal, 2020, 91, 106196.	7.2	6
63	A modified Euler method for solving fuzzy differential equations under generalized differentiability. Computational and Applied Mathematics, 2020, 39, 1.	2.2	9
64	A fuzzy generalized power series method under generalized Hukuhara differentiability for solving fuzzy Legendre differential equation. Soft Computing, 2020, 24, 8763-8779.	3.6	7
65	Combining fractional differential transform method and reproducing kernel Hilbert space method to solve fuzzy impulsive fractional differential equations. Computational and Applied Mathematics, 2020, 39, 1.	2.2	11
66	On theÂZ-Numbers. Studies in Fuzziness and Soft Computing, 2020, , 119-151.	0.8	1
67	Uncertain sets. , 2020, , 13-65.		3
68	Numerical solutions of uncertain fractional differential equations. , 2020, , 289-328.		0
69	Numerical solutions of uncertain partial differential equations. , 2020, , 329-372.		0
70	Discrete numerical solutions of uncertain differential equations. , 2020, , 207-287.		0
71	Continuous numerical solutions of uncertain differential equations. , 2020, , 127-205.		0

72 Soft computing with uncertain sets. , 2020, , 67-126.

#	Article	IF	CITATIONS
73	Conception and Implementation of a New Data-Driven Fuzzy Method for Reliability and Safety Analysis. New Mathematics and Natural Computation, 2020, 16, 517-539.	0.7	0
74	Numerical solution of two-dimensional nonlinear fuzzy Fredholm integral equations via quadrature iterative method. Journal of Intelligent and Fuzzy Systems, 2019, 36, 661-674.	1.4	3
75	Fuzzy multiquadric radial basis functions for solving fuzzy partial differential equations. Computational and Applied Mathematics, 2019, 38, 1.	2.2	4
76	Fuzzy finite difference method for solving fuzzy Poisson's equation. Journal of Intelligent and Fuzzy Systems, 2019, 37, 5281-5296.	1.4	3
77	Radio fuzzy graphs and assignment of frequency in radio stations. Computational and Applied Mathematics, 2019, 38, 1.	2.2	23
78	Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay. Applied Mathematics and Computation, 2019, 361, 583-598.	2.2	11
79	A new efficient method using Fibonacci polynomials for solving of first-order fuzzy Fredholm–Volterra integro-differential equations. Soft Computing, 2019, 23, 9777-9791.	3.6	9
80	Bipolar fuzzy linear system of equations. Computational and Applied Mathematics, 2019, 38, 1.	2.2	26
81	q-fractional differential equations with uncertainty. Soft Computing, 2019, 23, 9507-9524.	3.6	22
82	Fuzzy reproducing kernel space method for solving fuzzy boundary value problems. Mathematical Sciences, 2019, 13, 97-103.	1.7	1
83	Linear system of equations in m-polar fuzzy environment. Journal of Intelligent and Fuzzy Systems, 2019, 37, 8251-8266.	1.4	12
84	Dynamical control of computations using the finite differences method to solve fuzzy boundary value problem. Journal of Intelligent and Fuzzy Systems, 2019, 36, 1785-1796.	1.4	4
85	Z-Advanced numbers processes. Information Sciences, 2019, 480, 130-143.	6.9	50
86	A new class of conjugate gradient methods for unconstrained smooth optimization and absolute value equations. Calcolo, 2019, 56, 1.	1.1	25
87	New operations on pseudo-octagonal fuzzy numbers and its application. Soft Computing, 2019, 23, 9761-9776.	3.6	1
88	A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft Computing, 2019, 23, 4521-4530.	3.6	58
89	Fuzzy reliability estimation using the new operations of transmission average on Rational-linear patchy fuzzy numbers. Soft Computing, 2019, 23, 3383-3396.	3.6	2
90	Existence and uniqueness solutions of fuzzy integration-differential mathematical problem by using the concept of generalized differentiability. AIMS Mathematics, 2019, 4, 1430-1449.	1.6	0

#	Article	IF	CITATIONS
91	Two new methods for ranking of Z-numbers based on sigmoid function and sign method. International Journal of Intelligent Systems, 2018, 33, 1476-1487.	5.7	52
92	On the fuzzy Poisson equation. Fuzzy Sets and Systems, 2018, 347, 105-128.	2.7	12
93	Numerical solution of fuzzy fractional integro-differential equation via two-dimensional Legendre Wavelet method. Journal of Intelligent and Fuzzy Systems, 2018, 34, 2453-2465.	1.4	8
94	A new attitude coupled with fuzzy thinking for solving fuzzy equations. Soft Computing, 2018, 22, 3077-3095.	3.6	10
95	A study on the local convergence and dynamics of the two-step and derivative-free Kung–Traub's method. Computational and Applied Mathematics, 2018, 37, 2428-2444.	1.3	5
96	On general conditions for nestedness of the solution set of fuzzy-interval linear systems. Fuzzy Sets and Systems, 2018, 331, 105-115.	2.7	6
97	Reproducing kernel method for solving singularly perturbed differential-difference equations with boundary layer behavior in Hilbert space. Journal of Computational and Applied Mathematics, 2018, 328, 30-43.	2.0	16
98	Numerical solution of linear regression based on Z-numbers by improved neural network. Intelligent Automation and Soft Computing, 2018, 24, 193-204.	2.1	11
99	New multi-layer method for Z-number ranking using Hyperbolic Tangent function and convex combination. Intelligent Automation and Soft Computing, 2018, 24, 217-221.	2.1	20
100	Positive or negative solutions to first-order fully fuzzy linear differential equations under generalized differentiability. Applied Soft Computing Journal, 2018, 70, 359-370.	7.2	13
101	Solving Fuzzy Volterra Integrodifferential Equations of Fractional Order by Bernoulli Wavelet Method. Advances in Fuzzy Systems, 2018, 2018, 1-11.	0.9	8
102	A fuzzy solution of heat equation under generalized Hukuhara differentiability by fuzzy Fourier transform. Fuzzy Sets and Systems, 2017, 309, 81-97.	2.7	52
103	Fractional relaxation-oscillation differential equations via fuzzy variational iteration method. Journal of Intelligent and Fuzzy Systems, 2017, 32, 363-371.	1.4	13
104	An efficient approach based on radial basis functions for solving stochastic fractional differential equations. Mathematical Sciences, 2017, 11, 113-118.	1.7	16
105	The Parametric Form of Z-Number and Its Application in Z-Number Initial Value Problem. International Journal of Intelligent Systems, 2017, 32, 1030-1061.	5.7	29
106	Numerical solution of nonlinear two-dimensional Volterra integral equation of the second kind in the reproducing kernel space. Mathematical Sciences, 2017, 11, 139-144.	1.7	4
107	A New Approach to nth Order Fuzzy Differential Equations. Computational Mathematics and Modeling, 2017, 28, 278-300.	0.5	14
108	On the solution of fuzzy fractional optimal control problems with the Caputo derivative. Information Sciences, 2017, 421, 218-236.	6.9	25

#	Article	IF	CITATIONS
109	Semi-analytical methods for solving fuzzy impulsive fractional differential equations. Journal of Intelligent and Fuzzy Systems, 2017, 33, 3539-3560.	1.4	6
110	Algebraic solution of fuzzy linear system as: \$\$widetilde{A} widetilde{X}+ widetilde{B} widetilde{X}=widetilde{Y}\$\$ A ~ X ~ + B ~ X ~ = Y ~. Soft Computing, 2017, 21, 7463-7472.	3.6	7
111	An effective collocation technique to solve the singular Fredholm integral equations with Cauchy kernel. Advances in Difference Equations, 2017, 2017, .	3.5	6
112	A New Variational Iteration Method for a Class of Fractional Convection-Diffusion Equations in Large Domains. Mathematics, 2017, 5, 26.	2.2	4
113	Variable Shape Parameter Strategy in Local Radial Basis Functions Collocation Method for Solving the 2D Nonlinear Coupled Burgers' Equations. Mathematics, 2017, 5, 38.	2.2	2
114	Forefront of Fuzzy Logic in Data Mining: Theory, Algorithms, and Applications. Advances in Fuzzy Systems, 2016, 2016, 1-2.	0.9	1
115	Numerical Solution of Time-Fractional Order Telegraph Equation by Bernstein Polynomials Operational Matrices. Mathematical Problems in Engineering, 2016, 2016, 1-6.	1.1	14
116	A New Method for Defuzzification and Ranking of Fuzzy Numbers Based on the Statistical Beta Distribution. Advances in Fuzzy Systems, 2016, 2016, 1-8.	0.9	51
117	The prediction of cardiovascular disorders by fuzzy difference equations. , 2016, , .		4
118	Concreted solutions to fuzzy linear fractional differential equations. Applied Soft Computing Journal, 2016, 44, 108-116.	7.2	37
119	Application of fuzzy Picard method for solving fuzzy quadratic Riccati and fuzzy Painlevé I equations. Applied Mathematical Modelling, 2016, 40, 8125-8137.	4.2	7
120	Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via Tau-collocation method with convergence analysis. Journal of Computational and Applied Mathematics, 2016, 308, 435-446.	2.0	13
121	GENERAL SOLUTION OF BASSET EQUATION WITH CAPUTO GENERALIZED HUKUHARA DERIVATIVE. Journal of Applied Analysis and Computation, 2016, 6, 119-130.	0.5	7
122	Uncertain Hermite-Hadamard inequality for functions with (s,m)-Godunova-Levin derivatives via fractional integral. Journal of Nonlinear Science and Applications, 2016, 09, 3333-3347.	1.0	0
123	Optimal Multi-Products Dynamic Pricing and Inventory Policies for Coordinating Production and Marketing under Fuzzy Environment: Fuzzy Expansion Methods. Scientia Iranica, 2016, 23, 2297-2317.	0.4	0
124	A new attitude coupled with fuzzy thinking to fuzzy rings and fields. Journal of Intelligent and Fuzzy Systems, 2015, 29, 851-861.	1.4	20
125	An efficient method for solving LR fuzzy dual matrix systems. Journal of Intelligent and Fuzzy Systems, 2015, 30, 575-581.	1.4	6
126	A full fuzzy method for solving differential equation based on Taylor expansion. Journal of Intelligent and Fuzzy Systems, 2015, 29, 1039-1055.	1.4	33

#	Article	IF	CITATIONS
127	Advantage of gH-difference on the second-order fuzzy linear differential equations with constant coefficients. , 2015, , .		0
128	Numerical solutions for fractional differential equations by Tau-Collocation method. Applied Mathematics and Computation, 2015, 271, 979-990.	2.2	12
129	On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets and Systems, 2015, 265, 1-23.	2.7	96
130	Solving fuzzy differential equations based on the length function properties. Soft Computing, 2015, 19, 307-320.	3.6	25
131	A Proposed Method for Solving Fuzzy System of Linear Equations. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	3
132	The Solution of Fully Fuzzy Quadratic Equation Based on Optimization Theory. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	5
133	Approximating the Solution of the Linear and Nonlinear Fuzzy Volterra Integrodifferential Equations Using Expansion Method. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	4
134	A New Method to Find Fuzzy Nth Order Derivation and Applications to Fuzzy Nth Order Arithmetic Based on Generalized H-Derivation. International Journal of Optimization and Control: Theories and Applications, 2014, 4, 105-121.	1.7	1
135	On the new solutions for a fully fuzzy linear system. Soft Computing, 2014, 18, 95-107.	3.6	11
136	Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method. Soft Computing, 2014, 18, 2191-2200.	3.6	15
137	The use of airfoil and Chebyshev polynomials methods for solving fuzzy Fredholm integro-differential equations with Cauchy kernel. Soft Computing, 2014, 18, 1885-1897.	3.6	8
138	Fuzzy generalized H-differential and applications to fuzzy differential equations of second-order. Journal of Intelligent and Fuzzy Systems, 2014, 26, 1951-1967.	1.4	9
139	Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. Journal of Intelligent and Fuzzy Systems, 2014, 26, 1481-1490.	1.4	135
140	The use of fuzzy expansion method for solving fuzzy linear Volterra-Fredholm integral equations. Journal of Intelligent and Fuzzy Systems, 2014, 26, 1817-1822.	1.4	20
141	Variational Homotopy Perturbation Method An Efficient Scheme For Solving Partial Differential Equations In Fluid Mechanics. Journal of Mathematics and Computer Science, 2014, 09, 362-369.	1.0	8
142	A new method for solving an arbitrary fully fuzzy linear system. Soft Computing, 2013, 17, 1725-1731.	3.6	38
143	A method to find fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrix. Neural Computing and Applications, 2013, 23, 1159-1167.	5.6	7
144	Application of non-normal p-norm trapezoidal fuzzy number in reliability evaluation of electrical substations. Neural Computing and Applications, 2013, 23, 531-539.	5.6	5

#	Article	IF	CITATIONS
145	Toward the existence and uniqueness of solutions of second-order fuzzy volterra integro-differential equations with fuzzy kernel. Neural Computing and Applications, 2013, 22, 133-141.	5.6	18
146	On the fuzzy solution of LR fuzzy linear systems. Applied Mathematical Modelling, 2013, 37, 1170-1176.	4.2	39
147	Applications of fuzzy Laplace transforms. Soft Computing, 2013, 17, 145-158.	3.6	87
148	Finding an inner estimation of the solution set of a fuzzy linear system. Applied Mathematical Modelling, 2013, 37, 5148-5161.	4.2	16
149	Application of fuzzy differential transform method for solving fuzzy Volterra integral equations. Applied Mathematical Modelling, 2013, 37, 1016-1027.	4.2	56
150	On Solutions of Linear Fractional Differential Equations with Uncertainty. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.7	9
151	General Solutions of Fully Fuzzy Linear Systems. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.7	10
152	Existence and uniqueness of solutions for fuzzy fractional Volterra-Fredholm integro-differential equations. Journal of Fuzzy Set Valued Analysis, 2013, 2013, 1-9.	0.2	19
153	A New Distance Measure and Ranking Method for Generalized Trapezoidal Fuzzy Numbers. Mathematical Problems in Engineering, 2013, 2013, 1-6.	1.1	9
154	Ranking Fuzzy Numbers and Its Extensions. Mathematical Problems in Engineering, 2013, 2013, 1-1.	1.1	1
155	The nearest symmetric fuzzy solution for a symmetric fuzzy linear system. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2012, 20, 151-172.	0.3	6
156	A new similarity measure for generalized fuzzy numbers. Neural Computing and Applications, 2012, 21, 289-294.	5.6	9
157	A Comparative Study of Ranking Fuzzy Numbers Based on Regular Weighted Function. Fuzzy Information and Engineering, 2012, 4, 235-248.	1.7	2
158	A new metric for L–R fuzzy numbers and its application in fuzzy linear systems. Soft Computing, 2012, 16, 1743-1754.	3.6	17
159	Estimation of algebraic solution by limiting the solution set of an interval linear system. Soft Computing, 2012, 16, 2135-2142.	3.6	3
160	On the algebraic solution of fuzzy linear systems based on interval theory. Applied Mathematical Modelling, 2012, 36, 5360-5379.	4.2	48
161	Existence and uniqueness results for fractional differential equations with uncertainty. Advances in Difference Equations, 2012, 2012, .	3.5	88
162	Solving fuzzy second-order nonlinear Volterra–Fredholm integro-differential equations by using Picard method. Neural Computing and Applications, 2012, 21, 337-346.	5.6	18

#	Article	IF	CITATIONS
163	Evaluation of fully fuzzy regression models by fuzzy neural network. Neural Computing and Applications, 2012, 21, 105-112.	5.6	24
164	A new method for solving fuzzy integro-differential equation under generalized differentiability. Neural Computing and Applications, 2012, 21, 191-196.	5.6	43
165	Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1372-1381.	3.3	299
166	An approach for ranking of fuzzy numbers. Expert Systems With Applications, 2012, 39, 690-695.	7.6	83
167	A new approach to obtain algebraic solution of interval linear systems. Soft Computing, 2012, 16, 121-133.	3.6	18
168	Explicit solutions of fractional differential equations with uncertainty. Soft Computing, 2012, 16, 297-302.	3.6	191
169	DEGENERACY IN FUZZY LINEAR PROGRAMMING AND ITS APPLICATION. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2011, 19, 999-1012.	1.9	9
170	A Method for Ranking of Fuzzy Numbers Using New Weighted Distance. Mathematical and Computational Applications, 2011, 16, 359-369.	1.3	16
171	Variational Iteration Method for Solving n -th Order Fuzzy Differential Equations. Mathematical and Computational Applications, 2011, 16, 819-829.	1.3	12
172	Numerical Solution of N-Order Fuzzy Differential Equations by Runge-Kutta Method. Mathematical and Computational Applications, 2011, 16, 935-946.	1.3	13
173	Discrete homotopy analysis method for the nonlinear Fredholm integral equations. Ain Shams Engineering Journal, 2011, 2, 133-140.	6.1	13
174	Euler method for solving hybrid fuzzy differential equation. Soft Computing, 2011, 15, 1247-1253.	3.6	42
175	A new method for solving fuzzy linear differential equations. Computing (Vienna/New York), 2011, 92, 181-197.	4.8	62
176	The exact solutions of fuzzy wave-like equations with variable coefficients by a variational iteration method. Applied Soft Computing Journal, 2011, 11, 2186-2192.	7.2	33
177	Maximal- and minimal symmetric solutions of fully fuzzy linear systems. Journal of Computational and Applied Mathematics, 2011, 235, 4652-4662.	2.0	55
178	Fuzzy symmetric solutions of fuzzy linear systems. Journal of Computational and Applied Mathematics, 2011, 235, 4545-4553.	2.0	51
179	A note on "Fuzzy linear systems― Fuzzy Sets and Systems, 2011, 177, 87-92.	2.7	58
180	Bounded and symmetric solutions of fully fuzzy linear systems in dual form. Procedia Computer Science, 2011, 3, 1494-1498.	2.0	8

#	Article	IF	CITATIONS
181	Fuzzy fractional differential equations with Nagumo and Krasnoselskii-Krein condition. , 2011, , .		10
182	Solving fuzzy Volterra integro-differential equation by fuzzy differential transform method. , 2011, , .		6
183	Ranking of fuzzy numbers based on alpha-distance. , 2011, , .		3
184	Ranking fuzzy numbers using fuzzy maximizing-minimizing points. , 2011, , .		6
185	Fuzzy Laplace transforms. Soft Computing, 2010, 14, 235-243.	3.6	145
186	Ranking of fuzzy numbers by a new metric. Soft Computing, 2010, 14, 773-782.	3.6	20
187	Existence and Uniqueness of Solution of an Uncertain Characteristic Cauchy Reaction-Diffusion Equation by Adomian Decomposition Method. Mathematical and Computational Applications, 2010, 15, 404-419.	1.3	3
188	Existence and Uniqueness of Solutions of Fuzzy Volterra Integro-differential Equations. Communications in Computer and Information Science, 2010, , 491-500.	0.5	22
189	Expansion Method for Solving Fuzzy Fredholm-Volterra Integral Equations. Communications in Computer and Information Science, 2010, , 501-511.	0.5	3
190	A New Approach for Solving First Order Fuzzy Differential Equation. Communications in Computer and Information Science, 2010, , 522-531.	0.5	15
191	Application of Gaussian Quadratures in Solving Fuzzy Fredholm Integral Equations. Communications in Computer and Information Science, 2010, , 481-490.	0.5	5
192	Improved Predictor Corrector Method for solving fuzzy initial value problem. , 2009, , .		2
193	Solutions of The Fully Fuzzy Linear System. , 2009, , .		2
194	Fuzzy linear matrix equation. Fuzzy Optimization and Decision Making, 2009, 8, 165-177.	5.5	23
195	Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. Applied Mathematical Modelling, 2009, 33, 3151-3156.	4.2	203
196	Toward the existence and uniqueness of solutions of second-order fuzzy differential equations. Information Sciences, 2009, 179, 1207-1215.	6.9	59
197	Solving fuzzy differential equations by differential transformation method. Information Sciences, 2009, 179, 956-966.	6.9	85
198	Improved predictor–corrector method for solving fuzzy initial value problems. Information Sciences, 2009, 179, 945-955.	6.9	52

#	Article	IF	CITATIONS
199	A note on "Fuzzy differential equations and the extension principle― Information Sciences, 2009, 179, 2049-2051.	6.9	10
200	A method for solvingnth order fuzzy linear differential equations. International Journal of Computer Mathematics, 2009, 86, 730-742.	1.8	16
201	Homomorphic solution of fully fuzzy linear systems. Computational Mathematics and Modeling, 2008, 19, 282-291.	0.5	8
202	Iterative method for fuzzy equations. Soft Computing, 2008, 12, 935-939.	3.6	24
203	Nth-order fuzzy linear differential equations. Information Sciences, 2008, 178, 1309-1324.	6.9	51
204	Numerical solution of fuzzy differential equations by predictor–corrector method. Information Sciences, 2007, 177, 1633-1647.	6.9	165
205	Note on "Trapezoidal approximation of fuzzy numbers― Fuzzy Sets and Systems, 2007, 158, 755-756.	2.7	31
206	Gaussian quadratures for approximate of fuzzy multiple integrals. Applied Mathematics and Computation, 2006, 172, 175-187.	2.2	10
207	Solution of a fuzzy system of linear equation. Applied Mathematics and Computation, 2006, 175, 519-531.	2.2	67
208	Block Jacobi two-stage method with Gauss–Sidel inner iterations for fuzzy system of linear equations. Applied Mathematics and Computation, 2006, 175, 1217-1228.	2.2	48
209	THE ADOMIAN DECOMPOSITION METHOD APPLIED TO THE FUZZY SYSTEM OF FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2006, 14, 101-110.	1.9	44
210	Successive over relaxation iterative method for fuzzy system of linear equations. Applied Mathematics and Computation, 2005, 162, 189-196.	2.2	130
211	The Adomian decomposition method for fuzzy system of linear equations. Applied Mathematics and Computation, 2005, 163, 553-563.	2.2	123
212	Newton Cot's methods for integration of fuzzy functions. Applied Mathematics and Computation, 2005, 166, 339-348.	2.2	9
213	Romberg integration for fuzzy functions. Applied Mathematics and Computation, 2005, 168, 866-876.	2.2	15
214	Numerical methods for approximation of fuzzy data. Applied Mathematics and Computation, 2005, 169, 16-33.	2.2	7
215	Gaussian quadratures for approximate of fuzzy integrals. Applied Mathematics and Computation, 2005, 170, 874-885.	2.2	13
216	The Overall Assurance Interval for the Non-Archimedean Epsilon in DEA Models. Mathematical and Computational Applications, 2005, 10, 387-393.	1.3	1

#	Article	IF	CITATIONS
217	Numerical methods for fuzzy system of linear equations. Applied Mathematics and Computation, 2004, 155, 493-502.	2.2	148
218	Numerical methods forfuzzy differential inclusions. Computers and Mathematics With Applications, 2004, 48, 1633-1641.	2.7	90
219	A comment on fuzzy linear systems. Fuzzy Sets and Systems, 2003, 140, 559.	2.7	30
220	Difference Methods for Fuzzy Partial Differential Equations. Computational Methods in Applied Mathematics, 2002, 2, 233-242.	0.8	61
221	Numerical Solutions of Fuzzy Differential Equations by Taylor Method. Computational Methods in Applied Mathematics, 2002, 2, 113-124.	0.8	130
222	Numerical Solution of Fuzzy Differential Equation. Mathematical and Computational Applications, 2002, 7, 41-52.	1.3	24
223	Artificial neural network approach for solving fuzzy fractional order initial value problems under gHâ€differentiability. Mathematical Methods in the Applied Sciences, 0, , .	2.3	5
224	Solving fractional fuzzy impulsive differential equations with uncertainty by novel computational technique. New Mathematics and Natural Computation, 0, , .	0.7	2
225	Numerical Method to Solve a Hybrid Fuzzy Conformable Fractional Differential Equations. New Mathematics and Natural Computation, O, , .	0.7	0
226	Fuzzy integer linear programming problems. International Journal of Contemporary Mathematical Sciences, 0, 2, 167-181.	0.3	17
227	Note on ''Generalized Hukuhara differentiability of interval-valued functions and interval differential equations''. Journal of Fuzzy Set Valued Analysis, 0, 2012, 1-4.	0.2	15
228	Two-Dimensional Müntz–Legendre Wavelet Method for Fuzzy Hybrid Differential Equations. New Mathematics and Natural Computation, 0, , 1-21.	0.7	0