List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/427611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	sparse? temporal sampling in auditory fMRI. Human Brain Mapping, 1999, 7, 213-223.	3.6	801
2	Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research, 1986, 24, 1-15.	2.0	560
3	A neural code for low-frequency sound localization in mammals. Nature Neuroscience, 2001, 4, 396-401.	14.8	417
4	Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Experimental Brain Research, 1985, 60, 492-500.	1.5	308
5	Cells responsive to freeâ€field auditory stimuli in guineaâ€pig superior colliculus: distribution and response properties Journal of Physiology, 1983, 342, 361-381.	2.9	188
6	Spectral and Temporal Processing in Human Auditory Cortex. Cerebral Cortex, 2002, 12, 140-149.	2.9	184
7	Identification and localisation of auditory areas in guinea pig cortex. Experimental Brain Research, 2000, 132, 445-456.	1.5	167
8	Neuronal responses to amplitudeâ€modulated and pureâ€ŧone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise. Journal of the Acoustical Society of America, 1989, 85, 1978-1994.	1.1	158
9	Histochemical identification of cortical areas in the auditory region of the human brain. Experimental Brain Research, 2002, 143, 499-508.	1.5	158
10	The representation of auditory space in the mammalian superior colliculus. Nature, 1982, 299, 248-249.	27.8	151
11	Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hearing Research, 1990, 44, 161-178.	2.0	134
12	Sound-Level Measurements and Calculations of Safe Noise Dosage During EPI at 3 T. Journal of Magnetic Resonance Imaging, 2000, 12, 157-163.	3.4	110
13	Re-examining the relationship between audiometric profile and tinnitus pitch. International Journal of Audiology, 2011, 50, 303-312.	1.7	109
14	Interaural Time Difference Discrimination Thresholds for Single Neurons in the Inferior Colliculus of Guinea Pigs. Journal of Neuroscience, 2003, 23, 716-724.	3.6	107
15	Phase-Locked Responses to Pure Tones in the Inferior Colliculus. Journal of Neurophysiology, 2006, 95, 1926-1935.	1.8	107
16	Neuromagnetic Indicators of Tinnitus and Tinnitus Masking in Patients with and without Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 715-731.	1.8	107
17	Relationship between the dynamic range of cochlear nerve fibres and their spontaneous activity. Experimental Brain Research, 1980, 40, 115-8.	1.5	99
18	The representation of steadyâ€state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons. Journal of the Acoustical Society of America, 1986, 79, 100-113.	1.1	98

#	Article	IF	CITATIONS
19	Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neuroscience and Biobehavioral Reviews, 2014, 45, 119-133.	6.1	98
20	Time-course of the auditory BOLD response to scanner noise. Magnetic Resonance in Medicine, 2000, 43, 601-606.	3.0	94
21	Convergent Input from Brainstem Coincidence Detectors onto Delay-Sensitive Neurons in the Inferior Colliculus. Journal of Neuroscience, 1998, 18, 6026-6039.	3.6	92
22	The representation of the spectra and fundamental frequencies of steadyâ€state single―and doubleâ€vowel sounds in the temporal discharge patterns of guinea pig cochlearâ€nerve fibers. Journal of the Acoustical Society of America, 1990, 88, 1412-1426.	1.1	88
23	Topographic Distribution, Frequency, and Intensity Dependence of Stimulus-Specific Adaptation in the Inferior Colliculus of the Rat. Journal of Neuroscience, 2012, 32, 17762-17774.	3.6	88
24	Responses of Neurons in the Inferior Colliculus to Dynamic Interaural Phase Cues: Evidence for a Mechanism of Binaural Adaptation. Journal of Neurophysiology, 2000, 83, 1356-1365.	1.8	87
25	Descending Projections From Auditory Cortex Modulate Sensitivity in the Midbrain to Cues for Spatial Position. Journal of Neurophysiology, 2008, 99, 2347-2356.	1.8	87
26	Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hearing Research, 1996, 97, 136-152.	2.0	85
27	Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. Journal of the Acoustical Society of America, 2001, 109, 1559-1570.	1.1	81
28	Rate-intensity functions and their modification by broadband noise for neurons in the guinea pig inferior colliculus. Journal of the Acoustical Society of America, 1988, 83, 1488-1498.	1.1	80
29	Laminar differences in the response properties of cells in the primary auditory cortex. Experimental Brain Research, 2007, 184, 179-191.	1.5	78
30	Encoding of rapid amplitude fluctuations by cochlear-nerve fibres in the guinea-pig. Archives of Oto-rhino-laryngology, 1982, 236, 197-202.	0.5	77
31	Different areas of human non-primary auditory cortex are activated by sounds with spatial and nonspatial properties. Human Brain Mapping, 2004, 21, 178-190.	3.6	75
32	Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig. European Journal of Neuroscience, 2014, 40, 2427-2441.	2.6	75
33	Amplitude and Frequency-modulated Stimuli Activate Common Regions of Human Auditory Cortex. Cerebral Cortex, 2003, 13, 773-781.	2.9	73
34	The ability of inferior colliculus neurons to signal differences in interaural delay. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14050-14054.	7.1	72
35	Intensity coding in the auditory periphery of the cat: Responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise. Hearing Research, 1982, 7, 305-323.	2.0	70
36	Intensity coding in lowâ€frequency auditoryâ€nerve fibers of the guinea pig. Journal of the Acoustical Society of America, 1991, 90, 1958-1967.	1.1	70

#	Article	IF	CITATIONS
37	Onset Neurones in the Anteroventral Cochlear Nucleus Project to the Dorsal Cochlear Nucleus. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 153-70.	1.8	70
38	A monaural space map in the guinea-pig superior colliculus. Hearing Research, 1985, 17, 267-280.	2.0	64
39	The sound-level-dependent growth in the extent of fMRI activation in Heschl's gyrus is different for low- and high-frequency tones. Hearing Research, 2003, 179, 104-112.	2.0	62
40	Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. European Journal of Neuroscience, 2006, 24, 491-498.	2.6	62
41	Compact and easy-to-use tungsten-in-glass microelectrode manufacturing workstation. Medical and Biological Engineering and Computing, 1988, 26, 669-672.	2.8	60
42	Identification of subdivisions in the medial geniculate body of the guinea pig. Hearing Research, 2007, 228, 156-167.	2.0	60
43	Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes. Journal of Physiology, 2013, 591, 4003-4025.	2.9	60
44	A novel behavioural approach to detecting tinnitus in the guinea pig. Journal of Neuroscience Methods, 2013, 213, 188-195.	2.5	59
45	Cochlear fibre rate-intensity functions: No evidence for basilar membrane nonlinearities. Hearing Research, 1980, 2, 319-326.	2.0	57
46	Responses of auditoryâ€nerve fibers to stimuli producing psychophysical enhancement. Journal of the Acoustical Society of America, 1995, 97, 1786-1799.	1.1	54
47	Active control of the volume acquisition noise in functional magnetic resonance imaging: Method and psychoacoustical evaluation. Journal of the Acoustical Society of America, 2001, 110, 3041-3054.	1.1	54
48	Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11322-11326.	7.1	54
49	Auditory nerve fibre responses in the ferret. European Journal of Neuroscience, 2012, 36, 2428-2439.	2.6	53
50	Responses of Neurons in the Inferior Colliculus to Binaural Masking Level Difference Stimuli Measured by Rate-Versus-Level Functions. Journal of Neurophysiology, 1997, 77, 3085-3106.	1.8	51
51	Detectability Index Measures of Binaural Masking Level Difference Across Populations of Inferior Colliculus Neurons. Journal of Neuroscience, 1997, 17, 9331-9339.	3.6	51
52	Organisation of binaural interactions in the primary and dorsocaudal fields of the guinea pig auditory cortex. Hearing Research, 2000, 145, 177-189.	2.0	51
53	Heschl's gyrus is more sensitive to tone level than non-primary auditory cortex. Hearing Research, 2002, 171, 177-190.	2.0	51
54	Phase-locked responses to pure tones in the primary auditory cortex. Hearing Research, 2002, 172, 160-171.	2.0	50

#	Article	IF	CITATIONS
55	Binaural specialisation in human auditory cortex: an fMRI investigation of interaural correlation sensitivity. Neurolmage, 2003, 20, 1783-1794.	4.2	50
56	Processing of Communication Calls in Guinea Pig Auditory Cortex. PLoS ONE, 2012, 7, e51646.	2.5	50
57	Interaural delay sensitivity to tones and broad band signals in the guinea-pig inferior colliculus. Hearing Research, 1990, 50, 71-86.	2.0	48
58	Blocking GABAergic Inhibition Increases Sensitivity to Sound Motion Cues in the Inferior Colliculus. Journal of Neuroscience, 2002, 22, 1443-1453.	3.6	48
59	Sensitivity to Interaural Correlation of Single Neurons in the Inferior Colliculusof Guinea Pigs. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 244-259.	1.8	47
60	Binaural masking level difference effects in single units of the guinea pig inferior colliculus. Hearing Research, 1991, 57, 91-106.	2.0	44
61	Neuroanatomical Alterations in Tinnitus Assessed with Magnetic Resonance Imaging. Frontiers in Aging Neuroscience, 2016, 8, 221.	3.4	43
62	Neural Responses in the Inferior Colliculus to Binaural Masking Level Differences Created by Inverting the Noise in One Ear. Journal of Neurophysiology, 2000, 84, 844-852.	1.8	41
63	Spectrotemporal Receptive Field Properties of Single Units in the Primary, Dorsocaudal and Ventrorostral Auditory Cortex of the Guinea Pig. Audiology and Neuro-Otology, 2002, 7, 214-227.	1.3	41
64	Developments in active noise control sound systems for magnetic resonance imaging. Applied Acoustics, 2007, 68, 281-295.	3.3	41
65	Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. Journal of the Acoustical Society of America, 2009, 125, 347-359.	1.1	41
66	Morphology of physiologically characterised ventral cochlear nucleus stellate cells. Experimental Brain Research, 2003, 153, 418-426.	1.5	39
67	Some investigations into non-passive listening. Hearing Research, 2007, 229, 148-157.	2.0	38
68	Source Space Estimation of Oscillatory Power and Brain Connectivity in Tinnitus. PLoS ONE, 2015, 10, e0120123.	2.5	38
69	Representation of the purr call in the guinea pig primary auditory cortex. Hearing Research, 2005, 204, 115-126.	2.0	37
70	Variation in the Phase of Response to Low-Frequency Pure Tones in the Guinea Pig Auditory Nerve as Functions of Stimulus Level and Frequency. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 233-250.	1.8	37
71	Responses in the Inferior Colliculus of the Guinea Pig to Concurrent Harmonic Series and the Effect of Inactivation of Descending Controls. Journal of Neurophysiology, 2010, 103, 2050-2061.	1.8	36
72	Forward suppression in the auditory cortex is frequency-specific. European Journal of Neuroscience, 2011, 33, 1240-1251.	2.6	36

#	Article	IF	CITATIONS
73	Morphological and Physiological Characteristics of Laminar Cells in the Central Nucleus of the Inferior Colliculus. Frontiers in Neural Circuits, 2012, 6, 55.	2.8	36
74	Binaural masking level differences in the inferior colliculus of the guinea pig. Journal of the Acoustical Society of America, 1996, 100, 490-503.	1.1	35
75	Phase-locked responses to pure tones in guinea pig auditory cortex. NeuroReport, 2000, 11, 3989-3993.	1.2	35
76	Interconnections of auditory areas in the guinea pig neocortex. Experimental Brain Research, 2002, 143, 106-119.	1.5	34
77	Phase-Locked Responses to Pure Tones in the Auditory Thalamus. Journal of Neurophysiology, 2007, 98, 1941-1952.	1.8	34
78	Neural Signal Processing. , 1995, , 75-121.		33
79	First Spike Latency Code for Interaural Phase Difference Discrimination in the Guinea Pig Inferior Colliculus. Journal of Neuroscience, 2011, 31, 9192-9204.	3.6	33
80	Desynchronizing Responses to Correlated Noise: A Mechanism for Binaural Masking Level Differences at the Inferior Colliculus. Journal of Neurophysiology, 1999, 81, 722-734.	1.8	32
81	Cortical Inactivation by Cooling in Small Animals. Frontiers in Systems Neuroscience, 2011, 5, 53.	2.5	32
82	The binaural performance of a cross-talk cancellation system with matched or mismatched setup and playback acoustics. Journal of the Acoustical Society of America, 2007, 121, 1056-1069.	1.1	31
83	The directionality of the frog ear described by a mechanical model. Journal of Theoretical Biology, 1984, 110, 205-215.	1.7	30
84	Modelling convergent input onto interaural-delay-sensitive inferior colliculus neurones. Hearing Research, 2000, 149, 199-215.	2.0	30
85	Auditory evoked magnetic fields in individuals with tinnitus. Hearing Research, 2013, 302, 50-59.	2.0	30
86	Reassessing mechanisms of low-frequency sound localisation. Current Opinion in Neurobiology, 2004, 14, 457-460.	4.2	29
87	Mode-Locked Spike Trains in Responses of Ventral Cochlear Nucleus Chopper and Onset Neurons to Periodic Stimuli. Journal of Neurophysiology, 2010, 103, 1226-1237.	1.8	29
88	Temporal responses of primarylike anteroventral cochlear nucleus units to the steadyâ€state vowel /i/. Journal of the Acoustical Society of America, 1990, 88, 1437-1441.	1.1	28
89	Clinical evaluation and test-retest reliability of the IHR-McCormick Automated Toy Discrimination Test. International Journal of Audiology, 1994, 28, 165-179.	0.7	28
90	Temporal coding of the pitch of complex sounds by presumed multipolar cells in the ventral cochlear nucleus. Speech Communication, 2003, 41, 135-149.	2.8	24

#	Article	IF	CITATIONS
91	Binaural and Spatial Coding in the Inferior Colliculus. , 2005, , 377-410.		24
92	Forward Masking Estimated by Signal Detection Theory Analysis of Neuronal Responses in Primary Auditory Cortex. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 477-494.	1.8	24
93	Stream segregation in the anesthetized auditory cortex. Hearing Research, 2015, 328, 48-58.	2.0	23
94	Histological Basis of Laminar MRI Patterns in High Resolution Images of Fixed Human Auditory Cortex. Frontiers in Neuroscience, 2016, 10, 455.	2.8	21
95	Effects of the cannabinoid CB 1 agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs. Hearing Research, 2017, 356, 51-62.	2.0	21
96	Changes in the Response Properties of Inferior Colliculus Neurons Relating to Tinnitus. Frontiers in Neurology, 2014, 5, 203.	2.4	19
97	Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hearing Research, 1996, 97, 136-152.	2.0	19
98	The Temporal Window of Two-Tone Facilitation in Onset Units of the Ventral Cochlear Nucleus. Audiology and Neuro-Otology, 1996, 1, 12-30.	1.3	18
99	A ventrorostral belt is adjacent to the guinea pig primary auditory cortex. NeuroReport, 1999, 10, 2095-2099.	1.2	18
100	Modulating Central Gain in Tinnitus: Changes in Nitric Oxide Synthase in the Ventral Cochlear Nucleus. Frontiers in Neurology, 2015, 6, 53.	2.4	17
101	The Neural Substrate for Binaural Masking Level Differences in the Auditory Cortex. Journal of Neuroscience, 2015, 35, 209-220.	3.6	17
102	The IHR-McCormick Automated Toy Discrimination test—description and initial evaluation. International Journal of Audiology, 1989, 23, 245-249.	0.7	16
103	Responses of chopper units in the ventral cochlear nucleus of the anaesthetised guinea pig to clicks-in-noise and click trains. Hearing Research, 1997, 110, 234-250.	2.0	16
104	Responses to Diotic, Dichotic, and Alternating Phase Harmonic Stimuli in the Inferior Colliculus of Guinea Pigs. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 76-90.	1.8	15
105	Changes in interaural time sensitivity with interaural level differences in the inferior colliculus. Hearing Research, 2007, 223, 105-113.	2.0	14
106	Responses of neurons in the inferior colliculus to binaural disparities: Insights from the use of Fisher information and mutual information. Journal of Neuroscience Methods, 2008, 169, 391-404.	2.5	14
107	Cochlear Nerve and Cochlear Nucleus Responses to the Fundamental Frequency of Voiced Speech Sounds and Harmonic Complex Tones. , 1992, , 231-239.		14
108	Physiological Representations of Speech. , 2004, , 163-230.		13

Physiological Representations of Speech. , 2004, , 163-230. 108

#	Article	IF	CITATIONS
109	Functional subdivisions in low-frequency primary auditory cortex (AI). Experimental Brain Research, 2009, 194, 395-408.	1.5	13
110	The Time Course of Binaural Masking in the Inferior Colliculus of Guinea Pig Does Not Account for Binaural Sluggishness. Journal of Neurophysiology, 2010, 104, 189-199.	1.8	13
111	Extracellular Recording of Neuronal Activity Combined with Microiontophoretic Application of Neuroactive Substances in Awake Mice. Journal of Visualized Experiments, 2016, , .	0.3	13
112	Gap-induced reductions of evoked potentials in the auditory cortex: A possible objective marker for the presence of tinnitus in animals. Brain Research, 2018, 1679, 101-108.	2.2	13
113	Some otological differences between pigmented and albino-type guinea pigs. Archives of Oto-rhino-laryngology, 1984, 240, 271-275.	0.5	13
114	Reductions in cortical alpha activity, enhancements in neural responses and impaired gap detection caused by sodium salicylate in awake guinea pigs. European Journal of Neuroscience, 2017, 45, 398-409.	2.6	11
115	Contributions of Intrinsic Neural and Stimulus Variance to Binaural Sensitivity. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 425-442.	1.8	10
116	Location of cells giving phase-locked responses to pure tones in the primary auditory cortex. Hearing Research, 2011, 274, 142-151.	2.0	10
117	Communication calls produced by electrical stimulation of four structures in the guinea pig brain. PLoS ONE, 2018, 13, e0194091.	2.5	10
118	Gap-induced inhibition of the post-auricular muscle response in humans and guinea pigs. Hearing Research, 2019, 374, 13-23.	2.0	10
119	Neurone Response Latency in the Inferior Colliculus in Relation to the Auditory Brainstem Responses (ABR) in the Guinea Pig. Scandinavian Audiology, 1984, 13, 275-281.	0.5	9
120	Time course of rate responses to two-tone stimuli in auditory nerve fibres in the guinea pig. Hearing Research, 1991, 55, 167-176.	2.0	9
121	Prediction of hearing thresholds in children using an automated toy discrimination test. International Journal of Audiology, 1991, 25, 351-356.	0.7	9
122	Microelectrode and neuroimaging studies of central auditory function. British Medical Bulletin, 2002, 63, 95-105.	6.9	9
123	Responses to the purr call in three areas of the guinea pig auditory cortex. NeuroReport, 2005, 16, 2001-2005.	1.2	9
124	Different representations of tooth chatter and purr call in guinea pig auditory cortex. NeuroReport, 2011, 22, 613-616.	1.2	9
125	The Effect of Correlated Neuronal Firing and Neuronal Heterogeneity on Population Coding Accuracy in Guinea Pig Inferior Colliculus. PLoS ONE, 2013, 8, e81660.	2.5	9
126	Nitric oxide regulates the firing rate of neuronal subtypes in the guinea pig ventral cochlear nucleus. European Journal of Neuroscience, 2020, 51, 963-983.	2.6	9

#	Article	IF	CITATIONS
127	Perception and coding of high-frequency spectral notches: potential implications for sound localization. Frontiers in Neuroscience, 2014, 8, 112.	2.8	7
128	Nitric oxide increases gain in the ventral cochlear nucleus of guinea pigs with tinnitus. European Journal of Neuroscience, 2020, 52, 4057-4080.	2.6	7
129	Neural mechanisms of binaural hearing. Acoustical Science and Technology, 2002, 23, 61-68.	0.5	7
130	The response of guinea pig auditory-nerve fibres with high spontaneous discharge rates to increments in intensity. Brain Research, 1993, 618, 167-170.	2.2	5
131	Transducer hysteresis contributes to "stimulus artifact―in the measurement of click-evoked otoacoustic emissions. Journal of the Acoustical Society of America, 2005, 118, 620-622.	1.1	5
132	Representation of individual elements of a complex call sequence in primary auditory cortex. Frontiers in Systems Neuroscience, 2013, 7, 72.	2.5	5
133	Rate versus time representation of high-frequency spectral notches in the peripheral auditory system: A computational modeling study. Neurocomputing, 2008, 71, 693-703.	5.9	4
134	Age differences in the purr call distinguished by units in the adult guinea pig primary auditory cortex. Hearing Research, 2011, 277, 134-142.	2.0	4
135	A function for binaural integration in auditory grouping and segregation in the inferior colliculus. Journal of Neurophysiology, 2015, 113, 1819-1830.	1.8	4
136	Salicylate decreases the spontaneous firing rate of guinea pig auditory nerve fibres. Neuroscience Letters, 2021, 747, 135705.	2.1	4
137	Processing of Interaural Delay in the Inferior Colliculus. , 1997, , 353-364.		4
138	Psychophysical and Physiological Assessment of the Representation of High-frequency Spectral Notches in the Auditory Nerve. , 2007, , 51-59.		4
139	New fMRI methods for hearing and speech. Acoustical Science and Technology, 2006, 27, 125-133.	0.5	4
140	Juxtacellular Labeling of Stellate, Disk and Basket Neurons in the Central Nucleus of the Guinea Pig Inferior Colliculus. Frontiers in Neural Circuits, 2021, 15, 721015.	2.8	4
141	Suppression by Tones of the Click Evoked Compound Action Potential in the Normal and Pathological Guinea-Pig Cochlea and in man. Scandinavian Audiology, 1985, 14, 67-74.	0.5	3
142	Interaural Time Difference Processing. , 2005, , 1-13.		3
143	A novel optical technique for measuring small vibrations. Journal of Physics E: Scientific Instruments, 1982, 15, 478-484.	0.7	2
144	British Society of Audiology Short Papers Meeting on Experimental Studies of Hearing and Deafness. International Journal of Audiology, 2002, 41, 231-263.	1.7	2

#	Article	IF	CITATIONS
145	Control of Acoustic Signal Processing in Physiological Experiments Using PSoCs. , 2015, , .		2
146	Time-course of the auditory BOLD response to scanner noise. Magnetic Resonance in Medicine, 2000, 43, 601.	3.0	2
147	The need for a cool head: reversible inactivation reveals functional segregation in auditory cortex. Nature Neuroscience, 2008, 11, 530-531.	14.8	1
148	Free-field acoustic stimulation: A reliable, inexpensive system for positioning loudspeaker. Journal of Biomedical Engineering, 1985, 7, 68-70.	0.7	0
149	How General Are Neural Codes in Sensory Systems?. , 2006, , 283-302.		0
150	Unavoidably Delayed: A Personal Perspective of Twenty Years of Research on a Sound Localization Cue. Springer Handbook of Auditory Research, 2014, , 403-416.	0.7	0