Muzlifah A Haniffa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4275980/publications.pdf

Version: 2024-02-01

96 papers 19,828 citations

54 h-index 93 g-index

117 all docs

117 docs citations

times ranked

117

31844 citing authors

#	Article	IF	CITATIONS
1	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	13.5	1,956
2	Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 2017, 356, .	6.0	1,846
3	The Human Cell Atlas. ELife, 2017, 6, .	2.8	1,547
4	Single-cell reconstruction of the early maternal–fetal interface in humans. Nature, 2018, 563, 347-353.	13.7	1,547
5	IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses. Immunity, 2013, 38, 970-983.	6.6	703
6	Human Tissues Contain CD141hi Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells. Immunity, 2012, 37, 60-73.	6.6	643
7	Comparison of gene expression profiles between human and mouse monocyte subsets. Blood, 2010, 115, e10-e19.	0.6	609
8	<i>IRF8</i> Mutations and Human Dendritic-Cell Immunodeficiency. New England Journal of Medicine, 2011, 365, 127-138.	13.9	564
9	Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science, 2018, 361, 594-599.	6.0	511
10	Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine, 2021, 27, 904-916.	15.2	452
11	Human dendritic cell subsets. Immunology, 2013, 140, 22-30.	2.0	448
12	Mapping the human DC lineage through the integration of high-dimensional techniques. Science, 2017, 356, .	6.0	429
13	Decoding human fetal liver haematopoiesis. Nature, 2019, 574, 365-371.	13.7	392
14	A cell atlas of human thymic development defines T cell repertoire formation. Science, 2020, 367, .	6.0	368
15	Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity, 2019, 50, 493-504.e7.	6.6	352
16	Adult Human Fibroblasts Are Potent Immunoregulatory Cells and Functionally Equivalent to Mesenchymal Stem Cells. Journal of Immunology, 2007, 179, 1595-1604.	0.4	319
17	Mesenchymal stem cells: the fibroblasts' new clothes?. Haematologica, 2009, 94, 258-263.	1.7	303
18	Spatiotemporal immune zonation of the human kidney. Science, 2019, 365, 1461-1466.	6.0	281

#	Article	IF	CITATIONS
19	The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. Journal of Experimental Medicine, 2011, 208, 227-234.	4.2	277
20	Antigen-Presenting Cells in the Skin. Annual Review of Immunology, 2017, 35, 469-499.	9.5	275
21	Cells of the human intestinal tract mapped across space and time. Nature, 2021, 597, 250-255.	13.7	266
22	Developmental cell programs are co-opted in inflammatory skin disease. Science, 2021, 371, .	6.0	264
23	Human Dermal CD14 + Cells Are a Transient Population of Monocyte-Derived Macrophages. Immunity, 2014, 41, 465-477.	6.6	256
24	Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nature Medicine, 2015, 21, 591-600.	15.2	226
25	Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. Journal of Experimental Medicine, 2009, 206, 371-385.	4.2	222
26	Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature, 2017, 546, 662-666.	13.7	199
27	Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. Journal of Experimental Medicine, 2013, 210, 2321-2336.	4.2	190
28	The evolution of cellular deficiency in GATA2 mutation. Blood, 2014, 123, 863-874.	0.6	189
29	Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth. Cell Reports, 2020, 31, 107628.	2.9	186
30	Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327.	13.7	179
31	Gene expression variability across cells and species shapes innate immunity. Nature, 2018, 563, 197-202.	13.7	165
32	Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell, 2021, 184, 4090-4104.e15.	13.5	163
33	Ontogeny and Functional Specialization of Dendritic Cells in Human and Mouse. Advances in Immunology, 2013, 120, 1-49.	1.1	157
34	Early IFN- $\hat{l}\pm$ signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity, 2021, 54, 2650-2669.e14.	6.6	145
35	Human skin dendritic cells in health and disease. Journal of Dermatological Science, 2015, 77, 85-92.	1.0	144
36	Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood, 2017, 130, 167-175.	0.6	136

#	Article	IF	Citations
37	Human dendritic cell deficiency: the missing ID?. Nature Reviews Immunology, 2011, 11, 575-583.	10.6	127
38	Inherent mosaicism and extensive mutation of human placentas. Nature, 2021, 592, 80-85.	13.7	126
39	Mapping the developing human immune system across organs. Science, 2022, 376, eabo0510.	6.0	126
40	Human mononuclear phagocyte system reunited. Seminars in Cell and Developmental Biology, 2015, 41, 59-69.	2.3	116
41	Human and Mouse Mononuclear Phagocyte Networks: A Tale of Two Species?. Frontiers in Immunology, 2015, 6, 330.	2.2	115
42	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	13.7	114
43	Differential regulation of $na\tilde{A}$ ve and memory CD4+ T cells by alternatively activated dendritic cells. Journal of Leukocyte Biology, 2008, 84, 124-133.	1.5	113
44	A Three-Dimensional Atlas of Human Dermal Leukocytes, Lymphatics, and Blood Vessels. Journal of Investigative Dermatology, 2014, 134, 965-974.	0.3	111
45	Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. Journal of Leukocyte Biology, 2015, 97, 627-634.	1.5	105
46	A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells. Ocular Surface, 2021, 21, 279-298.	2.2	102
47	Epithelial damage and tissue Î ³ δT cells promote a unique tumor-protective IgE response. Nature Immunology, 2018, 19, 859-870.	7.0	92
48	Prenatal development of human immunity. Science, 2020, 368, 600-603.	6.0	90
49	Selective Susceptibility of Human Skin Antigen Presenting Cells to Productive Dengue Virus Infection. PLoS Pathogens, 2014, 10, e1004548.	2.1	80
50	Mobilizing monocytes to cross-present circulating viral antigen in chronic infection. Journal of Clinical Investigation, 2013, 123, 3766-3776.	3.9	80
51	Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Science Advances, 2021, 7, .	4.7	78
52	Identification of HIV transmitting CD11c+ human epidermal dendritic cells. Nature Communications, 2019, 10, 2759.	5.8	77
53	Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight, 2019, 4, .	2.3	77
54	Blood and immune development in human fetal bone marrow and Down syndrome. Nature, 2021, 598, 327-331.	13.7	73

#	Article	IF	Citations
55	CD1c+ blood dendritic cells have Langerhans cell potential. Blood, 2015, 125, 470-473.	0.6	72
56	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	4.6	68
57	Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nature Communications, 2021, 12, 7092.	5.8	65
58	Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science, 2018, 362, .	6.0	56
59	Lipopolysaccharide inhalation recruits monocytes and dendritic cell subsets to the alveolar airspace. Nature Communications, 2019, 10, 1999.	5.8	52
60	Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells. Journal of Immunological Methods, 2016, 432, 35-49.	0.6	50
61	Single-cell analysis reveals innate lymphoid cell lineage infidelity in atopic dermatitis. Journal of Allergy and Clinical Immunology, 2022, 149, 624-639.	1.5	48
62	Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. Journal of Leukocyte Biology, 2017, 101, 1393-1403.	1.5	43
63	Cutaneous extramedullary hemopoiesis in chronic myeloproliferative and myelodysplastic disorders. Journal of the American Academy of Dermatology, 2006, 55, S28-S31.	0.6	35
64	Donor monocyte–derived macrophages promote human acute graft-versus-host disease. Journal of Clinical Investigation, 2020, 130, 4574-4586.	3.9	35
65	Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia. Nature Medicine, 2022, 28, 743-751.	15.2	35
66	Regulatory T-Cell Suppression of CD8+ T-Cell-Mediated Graft-Versus-Host Reaction Requires Their Presence During Priming. Transplantation, 2009, 88, 188-197.	0.5	30
67	Mapping human development at single-cell resolution. Development (Cambridge), 2018, 145, .	1.2	30
68	The impact of single-cell RNA sequencing on understanding the functional organization of the immune system. Briefings in Functional Genomics, 2018, 17, 265-272.	1.3	30
69	Human anogenital monocyte-derived dendritic cells and langerin+cDC2 are major HIV target cells. Nature Communications, 2021, 12, 2147.	5.8	30
70	Re-evaluation of human BDCA-2+ DC during acute sterile skin inflammation. Journal of Experimental Medicine, 2020, 217, .	4.2	29
71	Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nature Communications, 2022, 13, 1158.	5.8	29
72	Rapid Detection of Dendritic Cell and Monocyte Disorders Using CD4 as a Lineage Marker of the Human Peripheral Blood Antigen-Presenting Cell Compartment. Frontiers in Immunology, 2013, 4, 495.	2.2	27

#	Article	IF	CITATIONS
73	Single cell derived mRNA signals across human kidney tumors. Nature Communications, 2021, 12, 3896.	5.8	27
74	MultiMAP: dimensionality reduction and integration of multimodal data. Genome Biology, 2021, 22, 346.	3.8	27
75	Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans. Blood, 2022, 139, 3387-3401.	0.6	26
76	Identification of human tissue cross-presenting dendritic cells. Oncolmmunology, 2013, 2, e23140.	2.1	21
77	Early Molecular Stratification of High-risk Primary Biliary Cholangitis. EBioMedicine, 2016, 14, 65-73.	2.7	17
78	Skin dendritic cell and T cell activation associated with dengue shock syndrome. Scientific Reports, 2017, 7, 14224.	1.6	17
79	Defining the Skin Cellular Community Using Single-Cell Genomics to Advance Precision Medicine. Journal of Investigative Dermatology, 2021, 141, 255-264.	0.3	16
80	The developing immune network in human prenatal skin. Immunology, 2020, 160, 149-156.	2.0	14
81	Use of topical glycopyrrolate in Ross syndrome. Journal of the American Academy of Dermatology, 2006, 55, S111-S112.	0.6	12
82	Isolation of Human Skin Dendritic Cell Subsets. Methods in Molecular Biology, 2016, 1423, 119-128.	0.4	10
83	Complexity of immune responses in COVID-19. Seminars in Immunology, 2021, 55, 101545.	2.7	10
84	Multiomics uncovers developing immunological lineages in human. European Journal of Immunology, 2021, 51, 764-772.	1.6	8
85	Prenatal Development and Function of Human Mononuclear Phagocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 649937.	1.8	6
86	Development of a physiological model of human middle ear epithelium. Laryngoscope Investigative Otolaryngology, 2021, 6, 1167-1174.	0.6	6
87	Taking single-cell transcriptomics to the bedside. Nature Reviews Clinical Oncology, 2017, 14, 590-592.	12.5	5
88	Conjunctival epithelial cells resist productive SARS-CoV-2 infection. Stem Cell Reports, 2022, 17, 1699-1713.	2.3	5
89	Complete human CD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. Journal of Allergy and Clinical Immunology, 2016, 138, 1709-1712.e11.	1.5	4
90	Multiplexed gene expression analysis of HLA class II-associated podoconiosis implicates chronic immune activation in its pathogenesis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2020, 114, 926-936.	0.7	4

#	Article	IF	CITATIONS
91	Reconstructing human DC, monocyte and macrophage development in utero using single cell technologies. Molecular Immunology, 2020, 123, 1-6.	1.0	3
92	Human lung macrophages: roll up for the MISTRG tour. Immunity, 2021, 54, 194-196.	6.6	2
93	Reduced Intensity Hematopoietic Stem Cell Transplant Rescues Immune Function and Corrects Pulmonary Alveolar Proteinosis in DCML Deficiency/GATA 2 Mutation. Blood, 2011, 118, 2045-2045.	0.6	1
94	271â€ f Interleukin-1β expressing inflammatory macrophages in temporal arteries affected by giant cell arteritis. Rheumatology, 2019, 58, .	0.9	0
95	023â€fGeneration and validation of an in vitro model of Langhans-type multinucleated giant cells to investigate giant cell arteritis. Rheumatology, 2019, 58, .	0.9	O
96	Muzlifah Haniffa—a new era for collaborative and supportive medical research. Nature Medicine, 2020, 26, 155-155.	15.2	0