Travis E Hartman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4275737/publications.pdf

Version: 2024-02-01

567281 713466 2,176 23 15 21 citations h-index g-index papers 23 23 23 3396 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Medicine, 2004, 10, 64-71.	30.7	697
2	Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nature Communications, 2013, 4, 1881.	12.8	261
3	High-fructose corn syrup enhances intestinal tumor growth in mice. Science, 2019, 363, 1345-1349.	12.6	243
4	Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria. Microbiology Spectrum, 2014, 2, .	3.0	164
5	Enhanced respiration prevents drug tolerance and drug resistance in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4495-4500.	7.1	157
6	Succinate Dehydrogenase is the Regulator of Respiration in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004510.	4.7	87
7	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
8	A Mycobacterium tuberculosis Cytochrome <i>bd</i> Oxidase Mutant Is Hypersensitive to Bedaquiline. MBio, 2014, 5, e01275-14.	4.1	73
9	Essentiality of Succinate Dehydrogenase in Mycobacterium smegmatis and Its Role in the Generation of the Membrane Potential Under Hypoxia. MBio, 2014, 5, .	4.1	70
10	ï• ² GFP10, a High-Intensity Fluorophage, Enables Detection and Rapid Drug Susceptibility Testing of Mycobacterium tuberculosis Directly from Sputum Samples. Journal of Clinical Microbiology, 2012, 50, 1362-1369.	3.9	69
11	Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004115.	4.7	63
12	Opposing reactions in coenzyme A metabolism sensitize <i>Mycobacterium tuberculosis</i> to enzyme inhibition. Science, 2019, 363, .	12.6	53
13	Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 7060-7069.	3.4	35
14	Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice. PLoS Pathogens, 2016, 12, e1006043.	4.7	35
15	The Complete Genome Sequence of the Emerging Pathogen Mycobacterium haemophilum Explains Its Unique Culture Requirements. MBio, 2015, 6, e01313-15.	4.1	30
16	CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2203.	12.8	22
17	Metabolic Perspectives on Persistence. Microbiology Spectrum, 2017, 5, .	3.0	14
18	Two Interacting ATPases Protect Mycobacterium tuberculosis from Glycerol and Nitric Oxide Toxicity. Journal of Bacteriology, 2020, 202, .	2.2	8

TRAVIS E HARTMAN

#	Article	IF	CITATIONS
19	The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis, 2020, 121, 101914.	1.9	6
20	Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria., 0,, 389-409.		5
21	Microbial Metabolomics: Fifty Shades of Metabolism. ACS Infectious Diseases, 2015, 1, 73-75.	3.8	4
22	Metabolic Perspectives on Persistence. , 2017, , 653-669.		2
23	Characterization of Phosphopantetheinyl Hydrolase from Mycobacterium tuberculosis. Microbiology Spectrum, 2021, 9, e0092821.	3.0	1