Zhun Hu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4275722/zhun-hu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23 220 10 14 g-index

24 358 ext. papers ext. citations 5.5 avg, IF 3.73

L-index

#	Paper	IF	Citations
23	110th Anniversary: Recent Progress and Future Challenges in Selective Catalytic Reduction of NO by H2 in the Presence of O2. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 10140-10153	3.9	23
22	Transfer hydrogenation of cinnamaldehyde with 2-propanol on Al2O3 and SiO2Al2O3 catalysts: role of Lewis and BrBsted acidic sites. <i>Catalysis Science and Technology</i> , 2017 , 7, 4511-4519	5.5	23
21	Synergism between palladium and nickel on Pd-Ni/TiO2 for H2-SCR: A transient DRIFTS study. Journal of Catalysis, 2020 , 381, 204-214	7.3	20
20	Effect of Crystal Phase of MnO2 with Similar Nanorod-Shaped Morphology on the Catalytic Performance of Benzene Combustion. <i>ChemistrySelect</i> , 2019 , 4, 473-480	1.8	20
19	Morphology Effects of CeO2 Nanomaterials on the Catalytic Combustion of Toluene: A Combined Kinetics and Diffuse Reflectance Infrared Fourier Transform Spectroscopy Study. <i>ACS Catalysis</i> , 2021 , 11, 7876-7889	13.1	19
18	Effects of support pre-calcination on the NOx storage and reduction performance of Pt B aO/Al2O3 catalysts. <i>Catalysis Science and Technology</i> , 2013 , 3, 2062	5.5	15
17	Characteristics of low platinum Pt B aO catalysts for NOx storage and reduction. <i>Catalysis Today</i> , 2010 , 153, 103-110	5.3	15
16	High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid. <i>Nanotechnology</i> , 2012 , 23, 495710	3.4	13
15	Solvent-Controlled Reactivity of Au/CeO2 Towards Hydrogenation of p-Chloronitrobenzene. <i>Catalysis Letters</i> , 2018 , 148, 1490-1498	2.8	12
14	NOx storage and reduction performance of PttoOxBaO/Al2O3 catalysts: Effects of cobalt loading and calcination temperature. <i>Catalysis Today</i> , 2010 , 158, 432-438	5.3	11
13	Do Olefin Hydrogenation Reactions Remain Structure Insensitive over Pt in Nanostructured Pt-on-Au Catalyst?. <i>ACS Catalysis</i> , 2018 , 8, 10254-10260	13.1	10
12	Effect of initial support particle size of MnO /TiO catalysts in the selective catalytic reduction of NO with NH <i>RSC Advances</i> , 2019 , 9, 4682-4692	3.7	9
11	Effects of a Catalyst on the Nanostructure and Reactivity of Soot under an Oxygen Atmosphere. <i>Energy & Energy </i>	4.1	7
10	Formic Acid or Formate Derivatives as the In Situ Hydrogen Source in Au-Catalyzed Reduction of para-Chloronitrobenzene. <i>ChemistrySelect</i> , 2018 , 3, 2850-2853	1.8	5
9	Catalytic Dehydration of 1,4-Butanediol over Mg\bar{G}b Binary Oxides and the Mechanism Study. ChemCatChem, 2020, 12, 2859-2871	5.2	4
8	Performance Improvement of NO x -Storage BaO/Al2O3 by Using Barium Peroxide as the Precursor of BaO. <i>Catalysis Letters</i> , 2009 , 132, 189-196	2.8	4
7	Removal of Residual Poly(vinylpyrrolidone) from Gold Nanoparticles Immobilized on SiO2 by UltravioletDzone Treatment. <i>ACS Applied Nano Materials</i> , 2019 , 2, 5720-5729	5.6	3

LIST OF PUBLICATIONS

6	In situ DRIFTS for the mechanistic studies of 1,4-butanediol dehydration over Yb/Zr catalysts. Journal of Catalysis, 2019 , 370, 138-151	7.3	3
5	Understanding the process of preparation of pure SSZ-13 via XRD and ATR-IR for selective catalytic reduction of NOx with NH3. <i>Materials Research Express</i> , 2019 , 6, 095510	1.7	1
4	Understanding the promotional effect of 3d transition metals (Fe, Co, Cu) on Pd/TiO2 for H2-SCR. <i>Catalysis Science and Technology</i> , 2021 , 11, 886-894	5.5	1
3	Deactivation Influence of HF on the V2O5WO3TiO2 SCR Catalyst. <i>Energy & Deactive Energy & Deactive Ene</i>	3 8 ₆ 1	1
2	Promoted solar-driven dry reforming of methane with Pt/mesoporous-TiO2 photo-thermal synergistic catalyst: Performance and mechanism study. <i>Energy Conversion and Management</i> , 2022 , 258, 115496	10.6	1
1	NOx Storage-Reduction Catalysis and Structure-Performance Relationship of Pt-BaO Catalyst. <i>Chinese Journal of Catalysis</i> , 2011 , 32, 17-26	11.3	