Krystian Åapa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4275685/publications.pdf Version: 2024-02-01

Κανςτιλη Δάαλ

#	Article	IF	CITATIONS
1	A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing, 2014, 135, 203-217.	3.5	81
2	A New Approach to Designing Interpretable Models of Dynamic Systems. Lecture Notes in Computer Science, 2013, , 523-534.	1.0	44
3	New Method for Design of Fuzzy Systems for Nonlinear Modelling Using Different Criteria of Interpretability. Lecture Notes in Computer Science, 2014, , 217-232.	1.0	40
4	New Algorithm for Evolutionary Selection of the Dynamic Signature Global Features. Lecture Notes in Computer Science, 2013, , 113-121.	1.0	37
5	A New Method for Designing and Complexity Reduction of Neuro-fuzzy Systems for Nonlinear Modelling. Lecture Notes in Computer Science, 2013, , 329-344.	1.0	36
6	A new approach to design of control systems using genetic programming. Information Technology and Control, 2015, 44, 433-442.	1.1	36
7	Flexible Fuzzy PID Controller (FFPIDC) and a Nature-Inspired Method for Its Construction. IEEE Transactions on Industrial Informatics, 2018, 14, 1078-1088.	7.2	22
8	Aspects of Structure and Parameters Selection of Control Systems Using Selected Multi-Population Algorithms. Lecture Notes in Computer Science, 2015, , 247-260.	1.0	21
9	Prediction of values of the dynamic signature features. Expert Systems With Applications, 2018, 104, 86-96.	4.4	20
10	Aspects of the Selection of the Structure and Parameters of Controllers Using Selected Population Based Algorithms. Lecture Notes in Computer Science, 2014, , 440-454.	1.0	17
11	On Explainable Flexible Fuzzy Recommender and Its Performance Evaluation Using the Akaike Information Criterion. Communications in Computer and Information Science, 2019, , 717-724.	0.4	15
12	On-Line Signature Partitioning Using a Population Based Algorithm. Journal of Artificial Intelligence and Soft Computing Research, 2020, 10, 5-13.	3.5	15
13	Evolutionary Algorithm with a Configurable Search Mechanism. Journal of Artificial Intelligence and Soft Computing Research, 2020, 10, 151-171.	3.5	15
14	Multipopulation Nature-Inspired Algorithm (MNIA) for the Designing of Interpretable Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2020, 28, 1125-1139.	6.5	14
15	A New Interpretability Criteria for Neuro-Fuzzy Systems for Nonlinear Classification. Lecture Notes in Computer Science, 2015, , 448-468.	1.0	12
16	Multi-Objective Evolutionary Instance Selection for Regression Tasks. Entropy, 2018, 20, 746.	1.1	12
17	Meta-optimization of multi-objective population-based algorithms using multi-objective performance metrics. Information Sciences, 2019, 489, 193-204.	4.0	12
18	A New Method for Generating of Fuzzy Rules for the Nonlinear Modelling Based on Semantic Genetic Programming. Lecture Notes in Computer Science, 2016, , 262-278.	1.0	12

Krystian Åapa

#	Article	IF	CITATIONS
19	On the Application of a Hybrid Genetic-Firework Algorithm for Controllers Structure and Parameters Selection. Advances in Intelligent Systems and Computing, 2016, , 111-123.	0.5	10
20	New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling. Studies in Computational Intelligence, 2018, , 225-264.	0.7	10
21	Negative Space-Based Population Initialization Algorithm (NSPIA). Lecture Notes in Computer Science, 2018, , 449-461.	1.0	8
22	On Explainable Recommender Systems Based on Fuzzy Rule Generation Techniques. Lecture Notes in Computer Science, 2019, , 358-372.	1.0	7
23	Algorithm Based on Population With a Flexible Search Mechanism. IEEE Access, 2019, 7, 132253-132270.	2.6	5
24	Aspects of Evolutionary Construction of New Flexible PID-fuzzy Controller. Lecture Notes in Computer Science, 2016, , 450-464.	1.0	4
25	New Method for Fuzzy Nonlinear Modelling Based on Genetic Programming. Lecture Notes in Computer Science, 2016, , 432-449.	1.0	3
26	Intelligent Approach to the Prediction of Changes in Biometric Attributes. IEEE Transactions on Fuzzy Systems, 2020, 28, 1073-1083.	6.5	3
27	Fuzzy PID Controllers with FIR Filtering and a Method for Their Construction. Lecture Notes in Computer Science, 2017, , 292-307.	1.0	3
28	A Method for Changes Prediction of the Dynamic Signature Global Features over Time. Lecture Notes in Computer Science, 2017, , 761-772.	1.0	3
29	Obtaining Pareto Front in Instance Selection with Ensembles and Populations. Lecture Notes in Computer Science, 2018, , 438-448.	1.0	3
30	The Method of the Evolutionary Designing theÂElastic Controller Structure. Lecture Notes in Computer Science, 2016, , 476-492.	1.0	3
31	Hybrid Initialization in the Process of Evolutionary Learning. Lecture Notes in Computer Science, 2017, , 380-393.	1.0	3
32	New Approach for Interpretability of Neuro-Fuzzy Systems with Parametrized Triangular Norms. Lecture Notes in Computer Science, 2016, , 248-265.	1.0	2
33	The Method of Predicting Changes of a Dynamic Signature Using Possibilities of Population-Based Algorithms. Lecture Notes in Computer Science, 2019, , 540-549.	1.0	2
34	An interpretable fuzzy system in the on-line signature scalable verification. , 2020, , .		2
35	Nonlinear Pattern Classification Using Fuzzy System and Hybrid Genetic-Imperialist Algorithm. Advances in Intelligent Systems and Computing, 2016, , 159-171.	0.5	2
36	Evolutionary Approach for Automatic Design of PID Controllers. Studies in Computational Intelligence, 2018, , 353-373.	0.7	2

Krystian Å**a**pa

#	Article	IF	CITATIONS
37	A Method for Nonlinear Fuzzy Modelling Using Population Based Algorithm with Flexibly Selectable Operators. Lecture Notes in Computer Science, 2017, , 263-278.	1.0	2
38	A population-based algorithm with the selection of evaluation precision and size of the population. Applied Soft Computing Journal, 2021, 115, 108154.	4.1	2
39	New Approach for Nonlinear Modelling Based on Online Designing of the Fuzzy Rule Base. Lecture Notes in Computer Science, 2016, , 230-247.	1.0	1
40	Aspects of Structure Selection and Parameters Tuning of Control Systems Using Hybrid Genetic-Fruit Fly Algorithm. Advances in Intelligent Systems and Computing, 2016, , 101-110.	0.5	1
41	PID-Fuzzy Controllers with Dynamic Structure and Evolutionary Method for Their Construction. Advances in Intelligent Systems and Computing, 2018, , 138-148.	0.5	1
42	Population Management Approaches in the OPn Algorithm. Lecture Notes in Computer Science, 2021, , 402-414.	1.0	1
43	Cascade PID Controller Optimization Using Bison Algorithm. Lecture Notes in Computer Science, 2020, , 406-416.	1.0	0
44	A Population-Based Method with Selection of a Search Operator. Lecture Notes in Computer Science, 2020, , 429-444.	1.0	0