
M Rami Alfarra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4275115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42, 4478-4485.	4.6	1,524
2	Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter. Environmental Science & Technology, 2008, 42, 3316-3323.	4.6	629
3	Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry. Environmental Science & Technology, 2005, 39, 4938-4952.	4.6	617
4	ldentification of the Mass Spectral Signature of Organic Aerosols from Wood Burning Emissions. Environmental Science & Technology, 2007, 41, 5770-5777.	4.6	459
5	Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers. Atmospheric Environment, 2004, 38, 5745-5758.	1.9	384
6	Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	374
7	Black-carbon absorption enhancement in the atmosphere determined by particle mixingÂstate. Nature Geoscience, 2017, 10, 184-188.	5.4	303
8	Source Attribution of Submicron Organic Aerosols during Wintertime Inversions by Advanced Factor Analysis of Aerosol Mass Spectra. Environmental Science & Technology, 2008, 42, 214-220.	4.6	286
9	Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature, 2019, 565, 587-593.	13.7	222
10	Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophysical Research Letters, 2007, 34, .	1.5	191
11	Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	166
12	Simplification of the representation of the organic component of atmospheric particulates. Faraday Discussions, 2005, 130, 341.	1.6	118
13	Real-Time Measurement of Oligomeric Species in Secondary Organic Aerosol with the Aerosol Time-of-Flight Mass Spectrometer. Analytical Chemistry, 2006, 78, 2130-2137.	3.2	99
14	Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, 21, 145-154.	0.7	95
15	Identification and characterization of inland ship plumes over Vancouver, BC. Atmospheric Environment, 2006, 40, 2767-2782.	1.9	76
16	Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmospheric Chemistry and Physics, 2020, 20, 2161-2175.	1.9	74
17	Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs. Atmospheric Chemistry and Physics, 2013, 13, 11769-11789.	1.9	50
18	Volatility measurements of photochemically and nebulizer-generated organic aerosol particles. Journal of Aerosol Science, 2006, 37, 1025-1051.	1.8	47

M RAMI ALFARRA

#	Article	IF	CITATIONS
19	Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments. Atmospheric Chemistry and Physics, 2011, 11, 5917-5929.	1.9	44
20	A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application. Atmospheric Measurement Techniques, 2019, 12, 1429-1439.	1.2	42
21	Comment on "The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer― Aerosol Science and Technology, 2016, 50, i-xv.	1.5	39
22	Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species. Atmospheric Chemistry and Physics, 2014, 14, 12781-12801.	1.9	27
23	Technical note: Use of an atmospheric simulation chamber to investigate the effect of different engine conditions on unregulated VOC-IVOC diesel exhaust emissions. Atmospheric Chemistry and Physics, 2018, 18, 11073-11096.	1.9	21
24	Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems. Atmospheric Chemistry and Physics, 2021, 21, 14251-14273.	1.9	20
25	Improving the Quantification of Secondary Organic Aerosol Using a Microflow Reactor Coupled to HPLC-MS and NMR to Manufacture Ad Hoc Calibration Standards. Analytical Chemistry, 2014, 86, 11238-11245.	3.2	17
26	Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest. Atmospheric Chemistry and Physics, 2013, 13, 11295-11305.	1.9	15
27	Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, .	1.2	14
28	Characterisation of the Manchester Aerosol Chamber facility. Atmospheric Measurement Techniques, 2022, 15, 539-559.	1.2	14
29	Recent Developments in the Mass Spectrometry of Atmospheric Aerosols. European Journal of Mass Spectrometry, 2010, 16, 389-395.	0.5	10
30	Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets. Atmospheric Chemistry and Physics, 2015, 15, 8077-8100.	1.9	10
31	PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers. Geoscientific Model Development, 2021, 14, 675-702.	1.3	9
32	Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification. Atmospheric Chemistry and Physics, 2021, 21, 16161-16182.	1.9	9
33	Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors. Atmospheric Chemistry and Physics, 2021, 21, 11303-11316.	1.9	7
34	Measured solid state and subcooled liquid vapour pressures of nitroaromatics using Knudsen effusion mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 8293-8314.	1.9	6
35	The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions. Atmospheric Chemistry and Physics, 2018, 18, 9393-9409.	1.9	5
36	Development of lithium attachment mass spectrometry – knudsen effusion and chemical ionisation mass spectrometry (KEMS, CIMS). Analyst, The, 2017, 142, 3666-3673.	1.7	4

M RAMI ALFARRA

#	Article	IF	CITATIONS
37	On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors. Atmospheric Chemistry and Physics, 2022, 22, 4149-4166.	1.9	4
38	STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer. Geoscientific Model Development, 2017, 10, 2365-2377.	1.3	1
39	Measured Solid State and Sub-Cooled Liquid Vapour Pressures of Benzaldehydes Using Knudsen Effusion Mass Spectrometry. Atmosphere, 2021, 12, 397.	1.0	1
40	General discussion: Sources, sinks and mitigation methods; evaluation of health impacts. Faraday Discussions, 2021, 226, 607-616.	1.6	0