Kamal Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4274407/publications.pdf

Version: 2024-02-01

477173 394286 2,429 36 19 29 citations h-index g-index papers 36 36 36 1425 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A jet fuel surrogate formulated by real fuel properties. Combustion and Flame, 2010, 157, 2333-2339.	2.8	484
2	The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena. Combustion and Flame, 2012, 159, 1444-1466.	2.8	355
3	Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combustion and Flame, 2007, 151, 209-224.	2.8	183
4	Experimental studies on the combustion characteristics of alternative jet fuels. Fuel, 2012, 98, 176-182.	3.4	172
5	Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature. Combustion and Flame, 2011, 158, 809-819.	2.8	149
6	Laminar flame speeds of moist syngas mixtures. Combustion and Flame, 2011, 158, 345-353.	2.8	131
7	Experimental and surrogate modeling study of gasoline ignition in a rapid compression machine. Combustion and Flame, 2012, 159, 3066-3078.	2.8	128
8	An experimental investigation of ethylene/O2/diluent mixtures: Laminar flame speeds with preheat and ignition delays at high pressures. Combustion and Flame, 2008, 153, 343-354.	2.8	92
9	Autoignition of gasoline and its surrogates in a rapid compression machine. Proceedings of the Combustion Institute, 2013, 34, 345-352.	2.4	92
10	Laminar flame speeds and extinction limits of conventional and alternative jet fuels. Fuel, 2011, 90, 1004-1011.	3.4	90
11	An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8. Combustion and Flame, 2010, 157, 676-685.	2.8	80
12	Autoignition of n-decane under elevated pressure and low-to-intermediate temperature conditions. Combustion and Flame, 2009, 156, 1278-1288.	2.8	75
13	Autoignition of gasoline surrogates at low temperature combustion conditions. Combustion and Flame, 2015, 162, 2272-2285.	2.8	63
14	A comparative experimental study of the autoignition characteristics of alternative and conventional jet fuel/oxidizer mixtures. Fuel, 2010, 89, 2853-2863.	3.4	62
15	Laminar flame speeds and extinction stretch rates of selected aromatic hydrocarbons. Fuel, 2012, 97, 695-702.	3.4	56
16	Autoignition of methanol: Experiments and computations. International Journal of Chemical Kinetics, 2011, 43, 175-184.	1.0	53
17	Flame Propagation and Extinction Characteristics of Neat Surrogate Fuel Components. Energy & Samp; Fuels, 2010, 24, 3840-3849.	2.5	44
18	Autoignition of methyl butanoate under engine relevant conditions. Combustion and Flame, 2016, 171, 1-14.	2.8	23

#	Article	IF	CITATIONS
19	Autoignition response of n-butanol and its blends with primary reference fuel constituents of gasoline. Combustion and Flame, 2015, 162, 2466-2479.	2.8	20
20	Experiments and modeling of the autoignition of methyl pentanoate at low to intermediate temperatures and elevated pressures in a rapid compression machine. Fuel, 2018, 212, 479-486.	3.4	16
21	Autoignition of methyl propanoate and its comparisons with methyl ethanoate and methyl butanoate. Combustion and Flame, 2018, 188, 116-128.	2.8	13
22	Autoignition of Binary Fuel Blends of n-Butanol and n-Heptane in a Rapid Compression Machine. , 2011, , .		9
23	Acetone photophysics at 282Ânm excitation at elevated pressure and temperature. I: absorption and fluorescence experiments. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	6
24	ULTRA-DILUTE COMBUSTION OF PRIMARY REFERENCE FUELS. Combustion Science and Technology, 2007, 179, 2361-2379.	1.2	4
25	Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels., 2009,,.		4
26	Autoignition of Butanol Isomers at Low to Intermediate Temperature and Elevated Pressure., 2011,,.		4
27	Influence of Blending <i>n</i> -Butanol with Isooctane and <i>n</i> -Heptane on Ignition Delay Times in a Fuel Ignition Tester. Energy & Ene	2.5	4
28	Ignition and combustion characteristics of decanoic acid derived alkyl esters in a fuel ignition tester. Fuel, 2020, 276, 117982.	3.4	4
29	Speciation and Heat Release Studies during <i>n</i> -Heptane Oxidation in a Motored Engine. Combustion Science and Technology, 2022, 194, 2283-2307.	1.2	4
30	Oxidation kinetics of methyl decanoate in a motored engine. Fuel, 2022, 308, 121912.	3.4	4
31	Laminar Flame Speeds of Preheated iso-Octane/Air and n-Decane/Air Flames Using Digital Particle Image Velocimetry. , 2004, , .		2
32	Autoignition, Flame Propagation, and Extinction of Binary Fuel Blends of n-Decane/Ethylene and n-Decane/Methane. , 2011 , , .		1
33	System Validation Experiments for Obtaining Tracer Laser-Induced Fluorescence Data at Elevated Pressure and Temperature. Applied Spectroscopy, 2018, 72, 618-626.	1.2	1
34	Oxidation kinetics of graphite nanoparticles with copper oxide as oxygen carrier. Journal of Thermal Analysis and Calorimetry, 2022, 147, 4165-4175.	2.0	1
35	Autoignition of Jet Fuels under High Pressure and Low-to-intermediate Temperatures. , 2009, , .		0
36	Laminar Flame Speeds and Extinction Stretch Rates of Selected Aromatic Hydrocarbons., 2011,,.		0