Asamanjoy Bhunia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4274224/publications.pdf

Version: 2024-02-01

36 papers 2,096 citations

236833 25 h-index 377752 34 g-index

36 all docs

36 docs citations

36 times ranked 3035 citing authors

#	Article	IF	CITATIONS
1	From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities. Chemical Communications, 2013, 49, 3961.	2.2	217
2	Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation. Journal of Materials Chemistry A, 2013, 1, 14990.	5.2	192
3	Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO ₂ adsorption. Journal of Materials Chemistry A, 2016, 4, 6259-6263.	5.2	176
4	Electrocatalytic Hydrogen Evolution from a Cobaloxime-Based Metal–Organic Framework Thin Film. Journal of the American Chemical Society, 2019, 141, 15942-15950.	6.6	135
5	A photoluminescent covalent triazine framework: CO ₂ adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. Journal of Materials Chemistry A, 2016, 4, 13450-13457.	5.2	122
6	Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. Journal of the American Chemical Society, 2018, 140, 2985-2994.	6.6	113
7	From a Dy(III) Single Molecule Magnet (SMM) to a Ferromagnetic [Mn(II)Dy(III)Mn(II)] Trinuclear Complex. Inorganic Chemistry, 2012, 51, 9589-9597.	1.9	112
8	Two linkers are better than one: enhancing CO ₂ capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers. Journal of Materials Chemistry A, 2017, 5, 3609-3620.	5.2	86
9	A homochiral vanadium–salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chemical Communications, 2016, 52, 1401-1404.	2.2	83
10	A highly stable dimethyl-functionalized Ce(<scp>iv</scp>)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm, 2016, 18, 7855-7864.	1.3	80
11	Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film. Dalton Transactions, 2017, 46, 1382-1388.	1.6	79
12	High adsorptive properties of covalent triazine-based frameworks (CTFs) for surfactants from aqueous solution. Chemical Communications, 2015, 51, 484-486.	2.2	68
13	Salenâ€Based Coordination Polymers of Manganese and the Rareâ€Earth Elements: Synthesis and Catalytic Aerobic Epoxidation of Olefins. Chemistry - A European Journal, 2013, 19, 1986-1995.	1.7	62
14	Manganese- and Lanthanide-Based 1D Chiral Coordination Polymers as an Enantioselective Catalyst for Sulfoxidation. Inorganic Chemistry, 2016, 55, 2701-2708.	1.9	50
15	A mixed-linker approach towards improving covalent triazine-based frameworks for CO2 capture and separation. Microporous and Mesoporous Materials, 2017, 241, 303-315.	2.2	49
16	Salen-based metal–organic frameworks of nickel and the lanthanides. Chemical Communications, 2011, 47, 2035.	2.2	48
17	Giant Zn ₁₄ Molecular Building Block in Hydrogen-Bonded Network with Permanent Porosity for Gas Uptake. Journal of the American Chemical Society, 2014, 136, 44-47.	6.6	45
18	Salen-Based Infinite Coordination Polymers of Nickel and Copper. Inorganic Chemistry, 2009, 48, 10483-10485.	1.9	39

#	Article	IF	CITATIONS
19	A supramolecular Co(<scp>ii</scp>) ₁₄ -metal–organic cube in a hydrogen-bonded network and a Co(<scp>ii</scp>)–organic framework with a flexible methoxy substituent. Chemical Communications, 2014, 50, 5441-5443.	2.2	39
20	Microporous La–Metal–Organic Framework (MOF) with Large Surface Area. Chemistry - A European Journal, 2015, 21, 2789-2792.	1.7	39
21	Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous and Mesoporous Materials, 2013, 181, 175-181.	2.2	36
22	Light-driven hydrogen evolution catalyzed by a cobaloxime catalyst incorporated in a MIL-101(Cr) metal–organic framework. Sustainable Energy and Fuels, 2018, 2, 1148-1152.	2.5	36
23	Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity. Chemical Communications, 2013, 49, 7599.	2.2	35
24	Synthesis of a Co(<scp>ii</scp>)–imidazolate framework from an anionic linker precursor: gas-sorption and magnetic properties. CrystEngComm, 2014, 16, 39-42.	1.3	31
25	Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium–Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides. Chemistry - A European Journal, 2016, 22, 6905-6913.	1.7	26
26	Salen-Based Coordination Polymers of Iron and the Rare Earth Elements. Inorganic Chemistry, 2011, 50, 12697-12704.	1.9	19
27	Formal water oxidation turnover frequencies from MIL-101(Cr) anchored Ru(bda) depend on oxidant concentration. Chemical Communications, 2018, 54, 7770-7773.	2.2	18
28	Synthesis and Characterization of Covalent Triazine Framework CTF-1@Polysulfone Mixed Matrix Membranes and Their Gas Separation Studies. Frontiers in Chemistry, 2019, 7, 693.	1.8	17
29	Trinuclear nickel–lanthanide compounds. Dalton Transactions, 2013, 42, 2445-2450.	1.6	13
30	Missing Building Blocks Defects in a Porous Hydrogen-bonded Amide-Imidazolate Network Proven by Positron Annihilation Lifetime Spectroscopy. ChemistrySelect, 2016, 1, 4320-4325.	0.7	9
31	Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas Sorption Properties. Materials, 2021, 14, 3214.	1.3	9
32	Cobaloxime tethered pyridine-functionalized ethylene-bridged periodic mesoporous organosilica as an efficient HER catalyst. Sustainable Energy and Fuels, 2022, 6, 398-407.	2.5	6
33	Photodynamics and Luminescence of Mono―and Triâ€Nuclear Lanthanide Complexes in the Gas Phase and in Solution. ChemPhysChem, 2018, 19, 3050-3060.	1.0	4
34	Mononuclear metal (II) complexes of a Bis(organoamido)phosphate ligand with antimicrobial activities against <i>Escherichia coli</i> . Applied Organometallic Chemistry, 2017, 31, e3821.	1.7	3
35	Uio-Type Metal-Organic Framework Thin Film with Redox-Active Linkers: Development and Charge Transport Behavior. ECS Meeting Abstracts, 2019, , .	0.0	0
36	Uio-Type Metal-Organic Framework Thin Film with Redox-Active Linkers: Development and Charge Transport Behavior. ECS Meeting Abstracts, 2019, , .	0.0	0