Shing-Hong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4274186/publications.pdf

Version: 2024-02-01

394421 434195 1,105 73 19 31 citations g-index h-index papers 73 73 73 1103 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition. Journal of Signal Processing Systems, 2011, 64, 249-264.	2.1	114
2	A Novel Noninvasive Measurement Technique for Analyzing the Pressure Pulse Waveform of the Radial Artery. IEEE Transactions on Biomedical Engineering, 2008, 55, 288-297.	4.2	88
3	Unobtrusive Activity Recognition of Elderly People Living Alone Using Anonymous Binary Sensors and DCNN. IEEE Journal of Biomedical and Health Informatics, 2018, 23, 1-1.	6.3	73
4	Fall Detection with the Support Vector Machine during Scripted and Continuous Unscripted Activities. Sensors, 2012, 12, 12301-12316.	3.8	64
5	Reduction of interference in oscillometric arterial blood pressure measurement using fuzzy logic. IEEE Transactions on Biomedical Engineering, 2003, 50, 432-441.	4.2	58
6	An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise. Sensors, 2019, 19, 3108.	3.8	57
7	Multi-Resident Activity Recognition in a Smart Home Using RGB Activity Image and DCNN. IEEE Sensors Journal, 2018, 18, 9718-9727.	4.7	47
8	Title is missing!. Journal of Medical and Biological Engineering, 2011, 31, 67.	1.8	42
9	A Cuffless Blood Pressure Measurement Based on the Impedance Plethysmography Technique. Sensors, 2017, 17, 1176.	3.8	40
10	Human Activity Recognition Using an Ensemble Learning Algorithm with Smartphone Sensor Data. Electronics (Switzerland), 2022, 11, 322.	3.1	36
11	Arrhythmia Identification with Two-Lead Electrocardiograms Using Artificial Neural Networks and Support Vector Machines for a Portable ECG Monitor System. Sensors, 2013, 13, 813-828.	3.8	30
12	Device-Free Non-Privacy Invasive Classification of Elderly Travel Patterns in A Smart House Using PIR Sensors and DCNN. IEEE Sensors Journal, 2017, , 1-1.	4.7	29
13	Classification of Photoplethysmographic Signal Quality with Deep Convolution Neural Networks for Accurate Measurement of Cardiac Stroke Volume. Applied Sciences (Switzerland), 2020, 10, 4612.	2.5	27
14	Heart rate extraction from photoplethysmogram on fuzzy logic discriminator. Engineering Applications of Artificial Intelligence, 2010, 23, 968-977.	8.1	22
15	The Physical Effects of Aromatherapy in Alleviating Work-Related Stress on Elementary School Teachers in Taiwan. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-7.	1.2	22
16	Using Accelerometers for Physical Actions Recognition by a Neural Fuzzy Network. Telemedicine Journal and E-Health, 2009, 15, 867-876.	2.8	21
17	Classification of Photoplethysmographic Signal Quality with Fuzzy Neural Network for Improvement of Stroke Volume Measurement. Applied Sciences (Switzerland), 2020, 10, 1476.	2.5	21
18	A New Oscillometry-Based Method for Estimating the Brachial Arterial Compliance Under Loaded Conditions. IEEE Transactions on Biomedical Engineering, 2008, 55, 2463-2470.	4.2	20

#	Article	IF	CITATIONS
19	Evaluating Quality of Photoplethymographic Signal on Wearable Forehead Pulse Oximeter With Supervised Classification Approaches. IEEE Access, 2020, 8, 185121-185135.	4.2	20
20	DCNN-based elderly activity recognition using binary sensors. , 2017, , .		19
21	Automatic detection of the carotid artery boundary on cross-sectional MR image sequences using a circle model guided dynamic programming. BioMedical Engineering OnLine, 2011, 10, 26.	2.7	17
22	The Progression of Muscle Fatigue During Exercise Estimation With the Aid of High-Frequency Component Parameters Derived From Ensemble Empirical Mode Decomposition. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 1647-1658.	6.3	17
23	Automated Detection of the Arterial Inner Walls of the Common Carotid Artery Based on Dynamic B-Mode Signals. Sensors, 2010, 10, 10601-10619.	3.8	14
24	Development of a Patch-Type Electrocardiographic Monitor for Real Time Heartbeat Detection and Heart Rate Variability Analysis. Journal of Medical and Biological Engineering, 2018, 38, 411-423.	1.8	14
25	DEVELOPMENT OF AN ARTERIAL APPLANATION TONOMETER FOR DETECTING ARTERIAL BLOOD PRESSURE AND VOLUME. Biomedical Engineering - Applications, Basis and Communications, 2004, 16, 322-330.	0.6	13
26	Assessment of Stroke Volume From Brachial Blood Pressure Using Arterial Characteristics. IEEE Transactions on Biomedical Engineering, 2015, 62, 2151-2157.	4.2	13
27	ECG Noise Cancellation Based on Grey Spectral Noise Estimation. Sensors, 2019, 19, 798.	3.8	13
28	A model-based fuzzy logic controller with Kalman filtering for tracking mean arterial pressure. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2001, 31, 676-686.	2.9	11
29	Quantitative Analysis of Sensor for Pressure Waveform Measurement. BioMedical Engineering OnLine, 2010, 9, 6.	2.7	11
30	Improvement of Left Ventricular Ejection Time Measurement in the Impedance Cardiography Combined with the Reflection Photoplethysmography. Sensors, 2018, 18, 3036.	3.8	11
31	Using the Characteristics of Pulse Waveform to Enhance the Accuracy of Blood Pressure Measurement by a Multi-Dimension Regression Model. Applied Sciences (Switzerland), 2019, 9, 2922.	2.5	10
32	An Examination System to Detect Deep Vein Thrombosis of a Lower Limb Using Light Reflection Rheography. Sensors, 2021, 21, 2446.	3.8	9
33	A novel compliance measurement in radial arteries using strain-gauge plethysmography. Physiological Measurement, 2009, 30, 947-956.	2.1	7
34	Effects of Moderate Exercise on Relieving Mental Load of Elementary School Teachers. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-8.	1.2	7
35	Deep convolutional neural network classifier for travel patterns using binary sensors., 2017,,.		7
36	A Portable and Wireless Multi-Channel Acquisition System for Physiological Signal Measurements. Sensors, 2019, 19, 5314.	3.8	6

#	Article	IF	CITATIONS
37	Using Direct Acyclic Graphs to Enhance Skeleton-Based Action Recognition with a Linear-Map Convolution Neural Network. Sensors, 2021, 21, 3112.	3.8	6
38	The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice. Sensors, 2016, 16, 1126.	3.8	5
39	A wearable ECG apperatus for ubiquitous health care. , 2016, , .		5
40	Assessment of the endothelial function with changed volume of brachial artery by menstrual cycle. BioMedical Engineering OnLine, 2016, 15, 106.	2.7	5
41	Using the Pulse Contour Method to Measure the Changes in Stroke Volume during a Passive Leg Raising Test. Sensors, 2018, 18, 3420.	3.8	4
42	Convolutional neural Network-based detection of deep vein thrombosis in a low limb with light reflection rheography. Measurement: Journal of the International Measurement Confederation, 2022, 189, 110457.	5.0	4
43	Cuffless and Touchless Measurement of Blood Pressure from Ballistocardiogram Based on a Body Weight Scale. Nutrients, 2022, 14, 2552.	4.1	4
44	FUZZY C-MEANS CLUSTERING FOR MYOCARDIAL ISCHEMIA ESTIMATION WITH PULSE WAVEFORM ANALYSIS. Biomedical Engineering - Applications, Basis and Communications, 2009, 21, 139-147.	0.6	3
45	Accurate Measurement of Cross-Sectional Area of Femoral Artery on MRI Sequences of Transcontinental Ultramarathon Runners Using Optimal Parameters Selection. Journal of Medical Systems, 2016, 40, 260.	3.6	3
46	A vibration-based approach to quantifying the dynamic elastance of the superficial arterial wall. BioMedical Engineering OnLine, $2016, 15, 40$.	2.7	3
47	Organ Contouring for Lung Cancer Patients with a Seed Generation Scheme and Random Walks. Sensors, 2020, 20, 4823.	3.8	3
48	A model-based fuzzy logic controller for tracking mean arterial pressure. , 0, , .		2
49	The short-time fractal scaling of heart rate variability to estimate the mental stress of driver. , 0, , .		2
50	Myocardial Ischemia Detection by Pulse Signal Features and Fuzzy Clustering., 2008,,.		2
51	Non-invasive determination of instantaneous brachial blood flow using the oscillometric method. Biomedizinische Technik, 2009, 54, 171-177.	0.8	2
52	ESTIMATING THE MEAN BLOOD FLOW OF ARM BASED ON WINDKESSEL MODEL. Biomedical Engineering - Applications, Basis and Communications, 2011, 23, 349-356.	0.6	2
53	The wireless holter ECG system based on Zigbee. , 2014, , .		2
54	Elliptic Shape Prior Dynamic Programming for Accurate Vessel Segmentation in MRI Sequences with Automated Optimal Parameter Selection. Journal of Medical and Biological Engineering, 2016, 36, 651-660.	1.8	2

#	Article	lF	Citations
55	Using impedance-plethysmography technique for cuffless blood pressure measurement., 2017,,.		2
56	Exploring the performance of dyslexic children in reciting and writing Chinese characters through the use of electroencephalogram. , $2017, \dots$		2
57	Wireless Patrol Sign-In System with Mental Fatigue Detection. Journal of Healthcare Engineering, 2018, 2018, 1-6.	1.9	2
58	Muscle Mass Measurement Using Machine Learning Algorithms with Electrical Impedance Myography. Sensors, 2022, 22, 3087.	3.8	2
59	ABNORMAL MATCHING BETWEEN THE LEFT VENTRICLE AND THE ARTERIAL SYSTEM IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION AFTER THROMBOLYSIS PLUS ADJUVANT ANGIOPLASTY. Biomedical Engineering - Applications, Basis and Communications, 2008, 20, 223-230.	0.6	1
60	Notice of Retraction: Using Windkessel Model to Measure Brachial Blood Flow., 2011,,.		1
61	An Electrocardiogram Classification for Irregular Heart Beats with Artificial Neural Network. , 2013, ,		1
62	Performance of frequency resource assignment schemes for cognitive radio based cooperative communication systems. , 2016, , .		1
63	A Study on the Development of Portable Wireless Multi-channel Physiological Signal Measurement System. , 2018, , .		1
64	Development of An POF-based Navigation System for People with Mild Cognitive Impairment Based on Wandering Detection. , 2019 , , .		1
65	Activity Recognition Based on DCNN and Kinect RGB Images. , 2020, , .		1
66	Theoretical and Experimental Study on Assessment of Flow-Mediated Dilatation Using the Cuff Method in Brachial Arteries. Electronics (Switzerland), 2022, 11, 351.	3.1	1
67	Responses of continuous arterial volume and arterial blood pressure to Valsalva maneuver., 0,,.		0
68	Altering the tonometer chamber pressure to follow mean arterial pressure by oscillometric theory. , $0, , .$		0
69	An optimal controller with synthetic fuzzy logic for tracking mean arterial pressure. , 0, , .		0
70	Using the system identify theorem for constructing the dynamic compliance of the brachial artery. , 0, , .		0
71	Wavelet Filter Evaluation for Extract Heart Rate of Infrared Plethysmograph Waveform. , 2008, , .		0
72	Performance of adaptive fuzzy bandwidth expansion scheme for OFDM communication systems. , 2014, , .		0

#	Article	IF	CITATIONS
73	Noninvasive Measurement of Time-Varying Arterial Wall Elastance Using a Single-Frequency Vibration Approach. Sensors, 2020, 20, 6463.	3.8	O