
Jakob Albert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4274082/publications.pdf Version: 2024-02-01

IAKOR ALBERT

#	Article	IF	CITATIONS
1	Valorization of secondary feedstocks from the agroindustry by selective catalytic oxidation to formic and acetic acid using the OxFA process. Biomass Conversion and Biorefinery, 2023, 13, 7199-7206.	2.9	6
2	Spectroscopic, Crystallographic, and Electrochemical Study of Different Manganese(II)â€Substituted Kegginâ€Type Phosphomolybdates. Chemistry - A European Journal, 2022, 28, .	1.7	10
3	Sensitivity Analysis and Parameter Optimization for the Fractionative Catalytic Conversion of Lignocellulosic Biomass in the Polyoxometalate–Ionosolv Concept. ACS Sustainable Chemistry and Engineering, 2022, 10, 8474-8483.	3.2	3
4	Development of an efficient downstream process for product separation and catalyst recycling of a homogeneous polyoxometalate catalyst by means of nanofiltration membranes and design of experiments. Chemical Engineering Research and Design, 2022, 185, 37-50.	2.7	11
5	Superior CNT-supported bimetallic RuCu catalyst for the highly selective hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Science and Technology, 2021, 11, 6649-6653.	2.1	12
6	Alcoholâ€Activated Vanadiumâ€Containing Polyoxometalate Complexes in Homogeneous Glucose Oxidation Identified with ⁵¹ Vâ€NMR and EPR Spectroscopy. ChemCatChem, 2021, 13, 3662-3670.	1.8	12
7	Selective catalytic hydrogenation of biomass derived furans to secondary alcohols using <scp>Pt</scp> /polyoxometalate catalysts under mild reaction conditions. Biofuels, Bioproducts and Biorefining, 2021, 15, 1431-1446.	1.9	4
8	Laser-Generated InO _{<i>x</i>} /ZrO ₂ Catalysts for CO ₂ Hydrogenation: Role of In Situ Fragmentation and Ripening Control. ACS Applied Energy Materials, 2021, 4, 9206-9215.	2.5	8
9	Modeling and optimization of bio-2-hexanol production from biomass derived dimethylfuran using Pt/K3PW12O40 by response surface methodology. Computers and Chemical Engineering, 2021, 155, 107546.	2.0	3
10	Slurry Phase Hydrogenation of CO ₂ to Methanol Using Supported In ₂ O ₃ Catalysts as Promising Approach for Chemical Energy Storage. Chemie-Ingenieur-Technik, 2021, 93, 585-593.	0.4	11
11	Additively manufactured RANEY®-type copper catalyst for methanol synthesis. Catalysis Science and Technology, 2020, 10, 164-168.	2.1	8
12	Kinetics of Triphase Extractive Oxidative Desulfurization of Benzothiophene with Molecular Oxygen Catalyzed by HPAâ€5. Chemical Engineering and Technology, 2020, 43, 465-475.	0.9	14
13	Switchable Catalytic Polyoxometalate-Based Systems for Biomass Conversion to Carboxylic Acids. ACS Omega, 2020, 5, 19082-19091.	1.6	7
14	Influence of gas impurities on the hydrogenation of CO ₂ to methanol using indium-based catalysts. Catalysis Science and Technology, 2020, 10, 7309-7322.	2.1	12
15	Glucose oxidation to formic acid and methyl formate in perfect selectivity. Green Chemistry, 2020, 22, 4311-4320.	4.6	38
16	Continuous Production of Formic Acid from Biomass in a Three-Phase Liquid–Liquid–Gas Reaction Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 10444-10453.	3.2	16
17	Extractive Catalytic Oxidative Denitrogenation of Fuels and Their Promoting Effect for Desulfurization Catalyzed by Vanadium Substituted Heteropolyacids and Molecular Oxygen. Energy & Fuels, 2020, 34, 8099-8109.	2.5	24
18	Combining Costâ€Efficient Cellulose and Shortâ€Chain Carboxylic Acid Production: The Polyoxometalate (POM)â€Ionosolv Concept. ChemPlusChem, 2020, 85, 373-386.	1.3	9

Jakob Albert

#	Article	IF	CITATIONS
19	Periodic Open Cellular Raneyâ€Copper Catalysts Fabricated via Selective Electron Beam Melting. Advanced Engineering Materials, 2020, 22, 1901524.	1.6	5
20	NH ₃ -SCR of NO with novel active, supported vanadium-containing Keggin-type heteropolyacid catalysts. Reaction Chemistry and Engineering, 2020, 5, 935-948.	1.9	12
21	Ru-Doped Wells–Dawson Polyoxometalate as Efficient Catalyst for Glycerol Hydrogenolysis to Propanediols. Materials, 2019, 12, 2175.	1.3	15
22	Catalytic Low-Temperature Dehydration of Fructose to 5-Hydroxymethylfurfural Using Acidic Deep Eutectic Solvents and Polyoxometalate Catalysts. Frontiers in Chemistry, 2019, 7, 661.	1.8	44
23	Shifting the equilibrium of methanol synthesis from CO ₂ by <i>in situ</i> absorption using ionic liquid media. Sustainable Energy and Fuels, 2019, 3, 3399-3405.	2.5	18
24	Improving the Fractionated Catalytic Oxidation of Lignocellulosic Biomass to Formic Acid and Cellulose by Using Design of Experiments. ACS Sustainable Chemistry and Engineering, 2019, 7, 9754-9762.	3.2	37
25	Development of a Structured Reactor System for CO ₂ Methanation under Dynamic Operating Conditions. Energy Technology, 2019, 7, 1900047.	1.8	25
26	Insights into the redox kinetics of vanadium substituted heteropoly acids through liquid core waveguide membrane microreactor studies. Chemical Engineering Journal, 2019, 369, 443-450.	6.6	19
27	Acrylic Acid Synthesis from Lactide in a Continuous Liquid-Phase Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 7140-7147.	3.2	12
28	Combining autoclave and LCWM reactor studies to shed light on the kinetics of glucose oxidation catalyzed by doped molybdenum-based heteropoly acids. RSC Advances, 2019, 9, 29347-29356.	1.7	11
29	Economic comparison of different electric fuels for energy scenarios in 2035. Applied Energy, 2019, 233-234, 1078-1093.	5.1	50
30	Explaining the role of vanadium in homogeneous glucose transformation reactions using NMR and EPR spectroscopy. Applied Catalysis A: General, 2019, 570, 262-270.	2.2	25
31	LCA in Process Development: Case Study of the OxFA-Process. Sustainable Production, Life Cycle Engineering and Management, 2019, , 105-113.	0.2	4
32	Zwitterionic Hydrobromic Acid Carriers for the Synthesis of 2â€Bromopropionic Acid from Lactide. ChemSusChem, 2018, 11, 1063-1072.	3.6	5
33	Biogenic Formic Acid as a Green Hydrogen Carrier. Energy Technology, 2018, 6, 501-509.	1.8	57
34	Catalyst Activation and Influence of the Oil Matrix on Extractive Oxidative Desulfurization Using Aqueous Polyoxometalate Solutions and Molecular Oxygen. Energy & Fuels, 2018, 32, 8683-8688.	2.5	28
35	Investigations on Catalyst Stability and Product Isolation in the Extractive Oxidative Desulfurization of Fuels Using Polyoxometalates and Molecular Oxygen. ChemCatChem, 2018, 10, 4602-4609.	1.8	23
36	Highly Selective Synthesis of Acrylic Acid from Lactide in the Liquid Phase. ChemSusChem, 2018, 11, 2936-2943.	3.6	18

Jakob Albert

#	Article	IF	CITATIONS
37	Selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose using tailor-made polyoxometalate catalysts. Faraday Discussions, 2017, 202, 99-109.	1.6	40
38	Extraction Coupled Oxidative Desulfurization of Fuels to Sulfate and Water-Soluble Sulfur Compounds Using Polyoxometalate Catalysts and Molecular Oxygen. ACS Sustainable Chemistry and Engineering, 2017, 5, 4110-4118.	3.2	84
39	Selective Catalytic Oxidation of Humins to Lowâ€Chain Carboxylic Acids with Tailorâ€Made Polyoxometalate Catalysts. ChemistrySelect, 2017, 2, 7296-7302.	0.7	17
40	Bio-based materials: general discussion. Faraday Discussions, 2017, 202, 121-139.	1.6	3
41	Detailed Kinetic Investigations on the Selective Oxidation of Biomass to Formic Acid (OxFA Process) Using Model Substrates and Real Biomass. ACS Sustainable Chemistry and Engineering, 2017, 5, 7383-7392.	3.2	41
42	Measuring and Predicting the Extraction Behavior of Biogenic Formic Acid in Biphasic Aqueous/Organic Reaction Mixtures. ACS Omega, 2017, 2, 8982-8989.	1.6	12
43	Formic Acid-Based Fischer–Tropsch Synthesis for Green Fuel Production from Wet Waste Biomass and Renewable Excess Energy. ACS Sustainable Chemistry and Engineering, 2016, 4, 5078-5086.	3.2	51
44	One-step Synthesizable Lindqvistâ~isopolyoxometalates as Promising New Catalysts for Selective Conversion of Glucose as a Model Substrate for Lignocellulosic Biomass to Formic Acid. ChemistrySelect, 2016, 1, 2889-2894.	0.7	18
45	Expanding the scope of biogenic substrates for the selective production of formic acid from water-insoluble and wet waste biomass. Green Chemistry, 2015, 17, 5164-5171.	4.6	70
46	Biomass oxidation to formic acid in aqueous media using polyoxometalate catalysts – boosting FA selectivity by in-situ extraction. Energy and Environmental Science, 2015, 8, 2985-2990.	15.6	131
47	Spectroscopic and electrochemical characterization of heteropoly acids for their optimized application in selective biomass oxidation to formic acid. Green Chemistry, 2014, 16, 226-237.	4.6	120
48	Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energy and Environmental Science, 2012, 5, 7956.	15.6	163