Muhammed Syam

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4273918/publications.pdf
Version: 2024-02-01

$1 \begin{aligned} & \text { Optimization of One-Step Block Method for Solving Second-Order Fuzzy Initial Value Problems. } \\ & \text { Complexity, 2021, 2021, 1-25. }\end{aligned}$

A New Analysis of Fractional-Order Equal-Width Equations via Novel Techniques. Symmetry, 2021, 13, 886.

A numerical method for solving fractional delay differential equations based on the operational matrix method. Chaos, Solitons and Fractals, 2021, 147, 110977.

A Computational Algorithm for Solution of Population Models for Single and Interacting Species. International Journal of Applied and Computational Mathematics, 2021, 7, 1.

Analysis of Multiterm Initial Value Problems with Caputoâ€"Fabrizio Derivative. Journal of Mathematics, 2021, 2021, 1-6.

Homotopy Sumudu transform method for solving applications in physics. Results in Physics, 2020, 18, 103265.

A reliable method for first order delay equations based on the implicit hybrid method. AEJ - Alexandria
Engineering Journal, 2020, 59, 2677-2681.

A numerical approach for investigating a special class of fractional Riccati equation. Results in
Physics, 2020, 17, 103080.

Generalized solutions of the fractional Burgerấ $母^{T M}$ s equation. Results in Physics, 2019, 15, 102525.
2.0

Fractional differential equations with Atanganaâe"Baleanu fractional derivative: Analysis and applications. Chaos, Solitons and Fractals: X, 2019, 2, 100013.
$1.0 \quad 53$

> Optimization of one step block method with three hybrid points for solving first-order ordinary
differential equations. Results in Physics, 2019, 12, 592-596.

A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet.
Mathematics, 2019, 7, 545.
1.1

17
12

Analytical solutions of time-fractional wave equation by double Laplace transform method. European
1.2

Physical Journal Plus, 2019, 134, 1.
The Modified Fractional Power Series Method for Solving Fractional Non-isothermal
14 Reactionấ""Diffusion Model Equations in a Spherical Catalyst. International Journal of Applied and
0.9

Computational Mathematics, 2019, 5, 1.
15 A Reliable Study of New Nonlinear Equation: Two-Mode Kuramotoấ"Sivashinsky. International Journal
of Applied and Computational Mathematics, 2018, 4, 1.

An Efficient Method for Solving Singularly Perturbed Riccati Equation with Fractional Order.
International Journal of Applied and Computational Mathematics, 2018, 4, 1.
3
time variable coefficients. Results in Physics, 2018, 8, 977-980.
19
20 Theoretical and computational perspectives on the eigenvalues of fourth-order fractional
Sturmâ€"Liouville problem. International Journal of Computer Mathematics, 2018, 95, 1548-1564.
1.0

17

Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model.
3.2

57
Neural Computing and Applications, 2018, 30, 3651-3675.
21 Necessary conditions of coupled mkdV-BLMP system for multiple-soliton solutions to exist. AEJ Alexandria Engineering Journal, 2018, 57, 2133-2137.
$3.4 \quad 3$

22 A modified approach for a reliable study of new nonlinear equation: two-mode Kortewegấe"de Vriesâ€"Burgers equation. Nonlinear Dynamics, 2018, 91, 1619-1626.
2.7

34

Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation.
Complexity, 2018, 2018, 1-7.

A new two-mode coupled Burgers equation: Conditions for multiple kink solution and singular kink solution to exist. Ain Shams Engineering Journal, 2018, 9, 3239-3244.
$3.5 \quad 5$
A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra
Integro-Differntial Type of Singularly Perturbed Problems. Mathematics, 2018, 6, 48.
37
38

> A study on the two-mode coupled modified Kortewegâ€"de Vries using the simplified bilinear and the trigonometric-function methods. Nonlinear Dynamics, 2017, 90, 1363-1371.
2.7

40

Unsteady Rheology of MHD Newtonian Material with Soret and Dufours Effects. International Journal of Applied and Computational Mathematics, 2017, 3, 1299-1311.
0.9

0

39 Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the
$4.1 \quad 87$
dynamics of heartbeat model. Applied Soft Computing Journal, 2017, 52, 605-629.
87

Evolutionary computational intelligence in solving a class of nonlinear Volterraâ $€^{\prime \prime}$ Fredholm
integro-differential equations. Journal of Computational and Applied Mathematics, 2017, 311, 314-323.
1.1

22
4nalytical Solution of the Fractional Fredholm Integrodifferential Equation Using the Fractional
Residual Power Series Method. Complexity, 2017, 2017, 1-6.
42 On the Fractional Legendre Equation and Fractional Legendre Functions. Progress in Fractional
Differentiation and Applications, 2017, 3, 93-102.
$0.9 \quad 13$

Differentiation and Applications, 2017, 3, 93-102.
1.13

43 | Fractional-order Legendre operational matrix of fractional integration for solving the Riccati |
| :--- |
| equation with fractional order. Applied Mathematics and Computation, 2016, 290, 281-291. |

$55 \quad$| QR-algebraic method for approximating zeros of system of polynomials. International Journal of |
| :--- |
| Computer Mathematics, 2011, 88, 110-120. |

A collocation-shooting method for solving fractional boundary value problems. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3814-3822.

An efficient technique for finding the eigenvalues of fourth-order Sturmâ€"Liouville problems. Chaos, Solitons and Fractals, 2009, 39, 659-665.

Numerical investigation of the instability of Benard problem. Chaos, Solitons and Fractals, 2009, 40,
1552-1558.

An efficient method for analyzing the solutions of the Korteweg-de Vries equation. Communications
59 An efficient method for analyzing the solutions of the Korteweg-de Vries
1.7

60 Nonlinear eigenvalue problems with symmetry. Chaos, Solitons and Fractals, 2008, 35, 931-941.
2.5

Efficient shooting method for solving two point boundary value problems. Chaos, Solitons and
Fractals, 2008, 35, 895-903.

Sineâ€"Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation. Chaos, Solitons and Fractals, 2007, 33, 1610-1617.

Numerical study for the electrified instability of viscoelastic cylindrical dielectric fluid film
63 surrounded by a conducting gas. Physica A: Statistical Mechanics and Its Applications, 2007, 377, 381-400.

Electrohydrodynamic instability of a dielectric compressible liquid sheet streaming into an ambient stationary compressible gas. Archive of Applied Mechanics, 2007, 77, 613-626.

The modified Broyden-variational method for solving nonlinear elliptic differential equations. Chaos, Solitons and Fractals, 2007, 32, 392-404.

An efficient method for solving Bratu equations. Applied Mathematics and Computation, 2006, 176, 704-713.

Weighted residual method for obtaining positive solutions of two-point nonlinear boundary value problems. Applied Mathematics and Computation, 2006, 176, 775-784.

An efficient implicit Rungeâe"Kutta method for second order systems. Applied Mathematics and Computation, 2006, 178, 229-238.
1.4

On the analytic solutions of the nonhomogeneous Blasius problem. Journal of Computational and Applied Mathematics, 2005, 182, 362-371.

Adomian decomposition method for approximating the solution of the Kortewegấ "deVries equation.
Applied Mathematics and Computation, 2005, 162, 1465-1473.

Nonlinear optimization exclusion tests for finding all solutions of nonlinear equations. Applied
Mathematics and Computation, 2005, 170, 1104-1116.
1.4

Numerical solution of singularly perturbed fifth order two point boundary value problem. Applied
Mathematics and Computation, 2005, 170, 1085-1094.

Finding all real zeros of polynomial systems using multi-resultant. Journal of Computational and Applied Mathematics, 2004, 167, 417-428.

Cubic spline interpolation predictors over implicitly defined curves. Journal of Computational andNumerical differentiation of implicitly defined curves. Journal of Computational and AppliedMathematics, 1999, 108, 131-144.
80 Collocation-continuation technique for solving nonlinear ordinary boundary value problems.
Computers and Mathematics With Applications, 1999, 37, 11-17.
1.4
\square

