Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273602/publications.pdf

Version: 2024-02-01

31	593	567281	610901
papers	citations	h-index	24 g-index
_	_		
31	31	31	342
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Long-term Thermal Exposure on Microstructure and Stress Rupture Properties of GH3535 Superalloy. Journal of Materials Science and Technology, 2015, 31, 269-279.	10.7	69
2	On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy. Scripta Materialia, 2006, 55, 457-460.	5.2	58
3	Effect of skew angle of holes on the tensile behavior of a Ni-base single crystal superalloy. Journal of Alloys and Compounds, 2015, 628, 158-163.	5.5	40
4	Effect of eutectics on plastic deformation and subsequent recrystallization in the single crystal nickel base superalloy CMSX-4. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 487-492.	5.6	39
5	Influence of Recrystallization on the High-Temperature Properties of a Directionally Solidified Ni-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 206-210.	2.2	36
6	Orientational dependence of recrystallization in an Ni-base single-crystal superalloy. Scripta Materialia, 2012, 66, 378-381.	5.2	35
7	Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850â€Â°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 26-36.	5.6	32
8	Evolution of Micro-Pores in a Single-Crystal Nickel-Based Superalloy During Solution Heat Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2682-2686.	2.2	26
9	Effect of carbon content on the recrystallization of a single crystal nickel-based superalloy. Materials Letters, 2013, 109, 154-157.	2.6	25
10	Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature. Scripta Materialia, 2019, 167, 71-75.	5.2	24
11	Effect of Surface Roughness on the Oxidation Behavior of a Directionally Solidified Ni-Based Superalloy at 1,100ÂA°C. Acta Metallurgica Sinica (English Letters), 2015, 28, 381-385.	2.9	17
12	Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 732-738.	5.6	17
13	Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy. Materials Characterization, 2015, 104, 81-85.	4.4	17
14	Effect of secondary orientation on room temperature tensile behaviors of Ni-base single crystal superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 659, 130-142.	5.6	17
15	On the role of eutectics during recrystallization in a single crystal nickel-base superalloy – CMSX-4. International Journal of Materials Research, 2009, 100, 1046-1051.	0.3	16
16	Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy. Journal of Alloys and Compounds, 2015, 647, 802-808.	5.5	15
17	Surface characteristics and microstructure evolution of a nickel-base single crystal superalloy treated by ultrasonic shot peening. Journal of Alloys and Compounds, 2022, 919, 165761.	5.5	14
18	Intermediate temperature creep of directionally solidified Ni-based superalloy containing local recrystallization. Materials Science & Damp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3062-3068.	5.6	12

#	Article	IF	CITATIONS
19	Effect of Skew Angle of Holes on the Thermal Fatigue Behavior of a Ni-based Single Crystal Superalloy. Acta Metallurgica Sinica (English Letters), 2017, 30, 185-192.	2.9	12
20	On the role of topological inversion and dislocation structures during tertiary creep at elevated temperatures for a Ni-based single crystal superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140982.	5.6	12
21	Creep deformation related to $\hat{^{13}}\hat{E}^1$ phase cutting at high temperature of a [111] oriented nickel-base single crystal superalloy. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138162.	5.6	11
22	Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100°C/150ÂMPa. Acta Metallurgica Sinica (English Letters), 2020, 33, 446-458.	2.9	10
23	Creep anisotropy of a 3rd generation nickel-base single crystal superalloy in the vicinity of [001] orientation. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143479.	5.6	9
24	The deformation and the recrystallization initiation in the dendrite core and interdendritic regions of a directionally solidified nickel-based superalloy. Journal of Alloys and Compounds, 2015, 629, 247-254.	5.5	8
25	Effect of Heat Treatment on Microstructure and Stress Rupture Properties of a Ni–Mo–Cr–Fe Base Corrosion-Resistant Superalloy. Acta Metallurgica Sinica (English Letters), 2019, 32, 116-126.	2.9	6
26	Microstructure and Stress-Rupture Property of Large-Scale Complex Nickel-Based Single Crystal Casting. Acta Metallurgica Sinica (English Letters), 2018, 31, 887-896.	2.9	5
27	Microstructural evolution of a nickel-base single-crystal superalloy during high-temperature homogenisation. Materials Science and Technology, 2020, 36, 1936-1942.	1.6	5
28	Dendritic coarsening of $\hat{l}^3 \hat{a} \in 2$ phase in a directionally solidified superalloy during 24,000h of exposure at 1173K. Materials Characterization, 2010, 61, 502-506.	4.4	3
29	The nucleation and growth mechanism of Ni-Sn eutectic in a single crystal superalloy. Journal of Crystal Growth, 2017, 479, 75-82.	1.5	1
30	Observation of a [100] Dislocations in the $\hat{l}^3\hat{a}\in^2$ Phase in a [011]-Oriented Nickel-Base Single Crystal Superalloy During High Temperature Creep. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4965-4969.	2.2	1
31	Effect of heating processing on the formation of micro-pores during solution treatment of high generation nickel-based single crystal superalloy. Materials Characterization, 2022, 189, 111994.	4.4	1