
VojtÄ>ch ÄŒada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends in climatically driven extreme growth reductions of <i>Picea abies</i> and <i>Pinus sylvestris</i> in Central Europe. Global Change Biology, 2022, 28, 557-570.	4.2	13
2	Historical mixed-severity disturbances shape current diameter distributions of primary temperate Norway spruce mountain forests in Europe. Forest Ecology and Management, 2022, 503, 119772.	1.4	8
3	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	5.8	66
4	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	2.0	89
5	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	5.8	8
6	Spatial and temporal extents of natural disturbances differentiate deadwood-inhabiting fungal communities in spruce primary forest ecosystems. Forest Ecology and Management, 2022, 517, 120272.	1.4	5
7	Increasing water-use efficiency mediates effects of atmospheric carbon, sulfur, and nitrogen on growth variability of central European conifers. Science of the Total Environment, 2022, 838, 156483.	3.9	4
8	Historical Disturbances Determine Current Taxonomic, Functional and Phylogenetic Diversity of Saproxylic Beetle Communities in Temperate Primary Forests. Ecosystems, 2021, 24, 37-55.	1.6	35
9	Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. Forest Ecology and Management, 2021, 479, 118522.	1.4	21
10	Historical natural disturbances shape spruce primary forest structure and indirectly influence bird assemblage composition. Forest Ecology and Management, 2021, 481, 118647.	1.4	12
11	Both Cycloneâ€induced and Convective Storms Drive Disturbance Patterns in European Primary Beech Forests. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033929.	1.2	12
12	Disturbance history is a key driver of tree life span in temperate primary forests. Journal of Vegetation Science, 2021, 32, e13069.	1.1	13
13	The impact of natural disturbance dynamics on lichen diversity and composition in primary mountain spruce forests. Journal of Vegetation Science, 2021, 32, e13087.	1.1	10
14	Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211631.	1.2	19
15	Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. Forest Ecology and Management, 2020, 455, 117676.	1.4	9
16	Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. Forest Ecology and Management, 2020, 457, 117734.	1.4	16
17	Integration of dendrochronological and palaeoecological disturbance reconstructions in temperate mountain forests. Forest Ecology and Management, 2020, 475, 118413.	1.4	11
18	Quantifying Natural Disturbances Using a Largeâ€Scale Dendrochronological Reconstruction to Guide Forest Management. Bulletin of the Ecological Society of America, 2020, 101, e01759.	0.2	2

VojtÄ>ch ÄŒada

#	Article	IF	CITATIONS
19	Moderate- to High-Severity Disturbances Shaped the Structure of Primary Picea Abies (L.) Karst. Forest in the Southern Carpathians. Forests, 2020, 11, 1315.	0.9	5
20	Quantifying natural disturbances using a largeâ€scale dendrochronological reconstruction to guide forest management. Ecological Applications, 2020, 30, e02189.	1.8	27
21	Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains. Forest Ecology and Management, 2019, 435, 196-204.	1.4	19
22	The climatic drivers of primary <i>Picea</i> forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25, 3136-3150.	4.2	45
23	Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.)) Tj ETQq1	1 0,784314	ŀrg₿T /Overle
24	Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agricultural and Forest Meteorology, 2019, 271, 214-224.	1.9	20
25	Patterns of forest dynamics in a secondary old-growth beech-dominated forest in the Jizera Mountains Beech Forest Reserve, Czech Republic. IForest, 2019, 12, 17-26.	0.5	7
26	Largeâ€scale disturbance legacies and the climate sensitivity of primary <i>Picea abies</i> forests. Global Change Biology, 2018, 24, 2169-2181.	4.2	79
27	Profile of tree-related microhabitats in European primary beech-dominated forests. Forest Ecology and Management, 2018, 429, 363-374.	1.4	45
28	Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers. Holocene, 2018, 28, 1574-1587.	0.9	26
29	Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. Forest Ecology and Management, 2017, 405, 210-218.	1.4	35
30	Longâ€ŧerm responses of canopy–understorey interactions to disturbance severity in primary <i>Picea abies</i> forests. Journal of Vegetation Science, 2017, 28, 1128-1139.	1.1	16
31	More ways than one: Mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. Forest Ecology and Management, 2017, 406, 410-426.	1.4	78
32	The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecology and Management, 2017, 388, 67-78.	1.4	103
33	Past disturbances and intraspecific competition as drivers of spatial pattern in primary spruce forests. Ecosphere, 2017, 8, e02037.	1.0	8
34	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	4.2	394
35	Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment. Frontiers in Plant Science, 2016, 7, 805.	1.7	18
36	Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. Forest Ecology and Management, 2016, 363, 169-178.	1.4	75

VojtÄ>ch ÄŒada

#	Article	IF	CITATIONS
37	Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests. PLoS ONE, 2015, 10, e0139214.	1.1	35
38	Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 2015, 354, 77-86.	1.4	104
39	Forest succession after a major anthropogenic disturbance: a case study of the Jewish Forest in the Bohemian Forest, Czech Republic. Journal of Forest Science, 2014, 60, 336-348.	0.5	2
40	Three hundred years of spatio-temporal development in a primary mountain Norway spruce stand in the Bohemian Forest, central Europe. Forest Ecology and Management, 2014, 330, 304-311.	1.4	19
41	Landscapeâ€level variability in historical disturbance in primary <i><scp>P</scp>icea abies</i> mountain forests of the <scp>E</scp> astern <scp>C</scp> arpathians, <scp>R</scp> omania. Journal of Vegetation Science, 2014, 25, 386-401.	1.1	99
42	Challenges of ecological restoration: Lessons from forests in northern Europe. Biological Conservation, 2013, 167, 248-256.	1.9	181
43	Dendrochronological reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. Forest Ecology and Management, 2013, 295, 59-68.	1.4	43
44	Structure and origin of mountain Norway spruce in the Bohemian Forest. Journal of Forest Science, 2011, 57, 523-535.	0.5	7