Mehmet Gülcan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273430/publications.pdf

Version: 2024-02-01

64 papers 1,907 citations

304743 22 h-index 265206 42 g-index

64 all docs

64
docs citations

64 times ranked 2089 citing authors

#	Article	IF	CITATIONS
1	Pd-MnO nanoparticles dispersed on amine-grafted silica: Highly efficient nanocatalyst for hydrogen production from additive-free dehydrogenation of formic acid under mild conditions. Applied Catalysis B: Environmental, 2015, 164, 324-333.	20.2	137
2	Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112970.	2.8	129
3	PdAu-MnO nanoparticles supported on amine-functionalized SiO2 for the room temperature dehydrogenation of formic acid in the absence of additives. Applied Catalysis B: Environmental, 2016, 180, 586-595.	20.2	121
4	MnO _{<i>x</i>} -Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature. ACS Catalysis, 2015, 5, 6099-6110.	11,2	120
5	Ruthenium(0) nanoparticles stabilized by metal-organic framework (ZIF-8): Highly efficient catalyst for the dehydrogenation of dimethylamine-borane and transfer hydrogenation of unsaturated hydrocarbons using dimethylamine-borane as hydrogen source. Applied Catalysis B: Environmental, 2014. 160-161. 534-541.	20.2	107
6	Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Advances, 2014, 4, 1526-1531.	3.6	98
7	Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode. Food Chemistry, 2013, 141, 1821-1827.	8.2	95
8	Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon, 2019, 5, e02980.	3.2	88
9	Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: Highly efficient catalytic material in the phenol hydrogenation. Microporous and Mesoporous Materials, 2016, 226, 94-103.	4.4	81
10	Palladium(0) nanoparticles supported on metal organic framework as highly active and reusable nanocatalyst in dehydrogenation of dimethylamine-borane. Applied Catalysis B: Environmental, 2014, 147, 394-401.	20.2	60
11	Rhodium nanoparticles stabilized by sulfonic acid functionalized metal-organic framework for the selective hydrogenation of phenol to cyclohexanone. Journal of Molecular Catalysis A, 2015, 410, 209-220.	4.8	59
12	Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. Journal of Colloid and Interface Science, 2018, 530, 321-327.	9.4	55
13	Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities. Applied Organometallic Chemistry, 2021, 35, e6272.	3.5	52
14	Palladium nanoparticles decorated on amine functionalized graphene nanosheets as excellent nanocatalyst for the hydrogenation of nitrophenols to aminophenol counterparts. Journal of Hazardous Materials, 2019, 369, 96-107.	12.4	49
15	Hydroxyapatite-nanosphere supported ruthenium(0) nanoparticle catalyst for hydrogen generation from ammonia-borane solution: kinetic studies for nanoparticle formation and hydrogen evolution. RSC Advances, 2014, 4, 28947-28955.	3.6	35
16	Catalytic methanolysis and hydrolysis of hydrazine-borane with monodisperse Ru NPs@nano-CeO2 catalyst for hydrogen generation at room temperature. International Journal of Hydrogen Energy, 2019, 44, 13432-13442.	7.1	31
17	Single-walled carbon nanotube supported Pt-Ru bimetallic superb nanocatalyst for the hydrogen generation from the methanolysis of methylamine-borane at mild conditions. Scientific Reports, 2019, 9, 15724.	3.3	28
18	A new highly active polymer supported ruthenium nanocatalyst for the hydrolytic dehydrogenation of dimethylamine-borane. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 60-65.	5.3	28

#	Article	IF	CITATIONS
19	The novel pyridine based symmetrical Schiff base ligand and its transition metal complexes: synthesis, spectral definitions and application in dye sensitized solar cells (DSSCs). Journal of Materials Science: Materials in Electronics, 2018, 29, 898-905.	2.2	27
20	Palladium(0) nanoparticles supported on hydroxyapatite nanospheres: active, long-lived, and reusable nanocatalyst for hydrogen generation from the dehydrogenation of aqueous ammonia–borane solution. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	26
21	Mononuclear Complexes Based on Pyrimidine Ring Azo Schiffâ€Base Ligand: Synthesis, Characterization, Antioxidant, Antibacterial, and Thermal Investigations. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1754-1762.	1.2	26
22	Monodisperse Ru Rh bimetallic nanocatalyst as highly efficient catalysts for hydrogen generation from hydrolytic dehydrogenation of methylamine-borane. Journal of Molecular Liquids, 2019, 285, 1-8.	4.9	24
23	Silver nanoparticles stabilized by a metal–organic framework (MIL-101(Cr)) as an efficient catalyst for imine production from the dehydrogenative coupling of alcohols and amines. Catalysis Science and Technology, 2020, 10, 4990-4999.	4.1	24
24	Transition Metal (II) Complexes with a Novel Azo-azomethine Schiff Base Ligand: Synthesis, Structural and Spectroscopic Characterization, Thermal Properties and Biological Applications. Journal of Fluorescence, 2017, 27, 2239-2251.	2.5	22
25	<i>In Situ</i> Formed Ruthenium(0) Nanoparticles Supported on TiO ₂ Catalyzed Hydrogen Generation from Aqueous Ammonia-Borane Solution at Room Temperature Under Air. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 534-542.	0.6	21
26	Preparation and detailed characterization of zirconia nanopowder supported rhodium (0) nanoparticles for hydrogen production from the methanolysis of methylamine-borane in room conditions. International Journal of Hydrogen Energy, 2018, 43, 22548-22556.	7.1	21
27	Pd(0) Nanoparticles Decorated on Graphene Nanosheets (GNS): Synthesis, Definition and Testing of the Catalytic Performance in the Methanolysis of Ammonia Borane at Room Conditions. ChemistrySelect, 2017, 2, 9628-9635.	1.5	20
28	Polypyrrole-multi walled carbon nanotube hybrid material supported Pt NPs for hydrogen evolution from the hydrolysis of MeAB at mild conditions. Scientific Reports, 2019, 9, 18553.	3.3	20
29	Synthesized polyvidone-stabilized Rh(0) nanoparticles catalyzed the hydrolytic dehydrogenation of methylamine-borane in ambient conditions. New Journal of Chemistry, 2017, 41, 11839-11845.	2.8	19
30	Electrical characteristics of organic/inorganic Pt(II) complex/p-Si semiconductor contacts. Materials Science in Semiconductor Processing, 2014, 28, 31-36.	4.0	18
31	Transition Metal(II) Complexes of a Novel Symmetrical Benzothiazole-Based Ligand: Synthesis, Spectral/Structural Characterization and Fluorescence Properties. Journal of Fluorescence, 2014, 24, 1679-1686.	2.5	17
32	Rh (0) nanoparticles impregnated on <scp>twoâ€dimensional</scp> transition metal carbides, <scp>MXene</scp> , as an effective nanocatalyst for ammoniaâ€borane hydrolysis. International Journal of Energy Research, 2022, 46, 11411-11423.	4.5	16
33	Palladium Nanoparticles Supported on Hydroxyapatite Nanospheres: Highly Active, Reusable and Green Catalyst for Suzuki – Miyaura Cross Coupling Reactions under Aerobic Conditions. ChemistrySelect, 2018, 3, 1569-1576.	1.5	15
34	Synthesis and Characterization of Cu(II), Ni(II), Co(II), Mn(II), and Cd(II) Transition Metal Complexes of Tridentate Schiff Base Derived from $\langle i \rangle O \langle i \rangle Vanillin$ and $\langle i \rangle O \langle i \rangle Vanillin$ Annopyrimidine-2-Thione. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1962-1971.	1.6	14
35	Enhancement of adsorption capacity of reduced graphene oxide by sulfonic acid functionalization: Malachite green and Zn (II) uptake. Materials Chemistry and Physics, 2020, 256, 123662.	4.0	14
36	A novel highly active and reusable carbon based platinum-ruthenium nanocatalyst for dimethylamine-borane dehydrogenation in water at room conditions. Scientific Reports, 2020, 10, 7149.	3.3	14

#	Article	IF	CITATIONS
37	Characterization and antioxidant-antimicrobial activity of silver nanoparticles synthesized using Punica granatum extract. International Journal of Environmental Science and Technology, 2022, 19, 2781-2788.	3.5	14
38	Synthesis, Characterization, DFT Studies, and Photodiode Application of Azo-azomethine-Based Ligand and Its Transition-Metal Complexes. Journal of Electronic Materials, 2018, 47, 7240-7250.	2.2	13
39	Silica supported ternary NiRuPt alloy nanoparticles: Highly efficient heterogeneous catalyst for H2 generation via selective decomposition of hydrous hydrazine in alkaline solution. International Journal of Hydrogen Energy, 2020, 45, 27098-27113.	7.1	12
40	Highly efficient and selective one-pot tandem imine synthesis via amine-alcohol cross-coupling reaction catalysed by chromium-based MIL-101 supported Au nanoparticles. Molecular Catalysis, 2021, 501, 111363.	2.0	12
41	Preparation and characterization of amine-terminated delafossite type oxide, CuMnO2–NH2, supported Pd (0) nanoparticles for the H2 generation from the methanolysis of ammonia-borane. International Journal of Hydrogen Energy, 2022, 47, 16036-16046.	7.1	12
42	Effects of the r-GO doping on the structural, optical and electrical properties of CdO nanostructured films by ultrasonic spray pyrolysis. Journal of Materials Science: Materials in Electronics, 2020, 31, 2111-2121.	2.2	11
43	Ex situ synthesis and characterization of a polymer-carbon nanotube-based hybrid nanocatalyst with one of the highest catalytic activities and stabilities for the hydrolytic dehydrogenation of hydrazine-borane at room temperature conditions. Journal of Colloid and Interface Science, 2019, 552, 432-438.	9.4	10
44	H2 production from the hydrolytic dehydrogenation of methylamine-borane catalyzed by sulfonated reduced graphene oxide-aided synthesis of ruthenium nanoparticles. International Journal of Hydrogen Energy, 2021, 46, 32523-32535.	7.1	10
45	Ohmic and rectifier properties of Al/Ligand(N-APTH) and Al/Cu(II)Complex contacts. Microelectronic Engineering, 2010, 87, 2282-2287.	2.4	9
46	Synthesis and characterization of UTSA-76 metal organic framework containing Lewis basic sites for the liquid-phase adsorption of UVI. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125663.	4.7	8
47	2, 6â€Bis((<i>E</i>)â€((5â€benzoylâ€2â€thioxoâ€4â€phenylpyrimidinâ€1(<i>2H</i>)â€yl)imino)methyl)â€4â€oits Metal(II) Complexes: Synthesis, Spectroscopy, Biological Activity, and Photoluminescence Features. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2282-2289.	(methyl)pł 1.2	
48	Synthesis of bis(thiosemicarbazone) derivatives: Definition, crystal structure, biological potential and computational analysis. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 14-22.	1.6	7
49	Fabrication and characterization of copper nanoparticles anchored on sulfonated reduced graphene oxide as effective catalyst for the reduction of Thioflavine-T cationic dye in aqueous medium. Materials Chemistry and Physics, 2022, 275, 125212.	4.0	6
50	Magnetic nanoparticles., 2021,, 197-236.		6
51	Manganese oxide octahedral molecular sieves stabilized Rh nanoparticles for the hydrogen production from the ethylenediamine-bisborane hydrolysis. International Journal of Hydrogen Energy, 2022, 47, 16494-16506.	7.1	6
52	Enhancement in the photovoltaic efficiency of dye-sensitized solar cell by doping TiO2 with MIL-101 MOF structure. Materials Science in Semiconductor Processing, 2022, 150, 106951.	4.0	6
53	Synthesis, Characterisation and Antimicrobial Activity 1-Aminopyrimidine-2(1H)-Thione and its Co(II), Ni(II), Pd(II) and Pt(II) Complexes. Journal of Chemical Research, 2010, 34, 274-277.	1.3	5
54	Metal/semiconductor contact properties of Al/Co(II)complex compounds. Microelectronic Engineering, 2011, 88, 41-45.	2.4	5

#	Article	IF	CITATIONS
55	Improved efficiency in dye sensitized solar cell (DSSC) by <i>nano</i> -MIL-101(Cr) impregnated photoanode. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77, 93-104.	1.5	4
56	Fluorescence Properties and Electrochemical Behavior of Some Schiff Bases Derived from N-Aminopyrimidine. Journal of Fluorescence, 2014, 24, 389-396.	2.5	3
57	Polymer-based nanomaterials to use in hydrogen acquisition and hydrogen energy storage. , 2021, , 153-186.		3
58	Green and efficient oxidative desulfurization of refractory S-compounds from liquid fuels catalyzed by chromium-based MIL-101 stabilized MoOx catalyst. Molecular Catalysis, 2022, 522, 112249.	2.0	3
59	Comparative of MIL101(Cr) and <i>nano</i> >â€MIL101(Cr) Electrode as an Electrochemical Hydrogen Peroxide Sensor. Electroanalysis, 2022, 34, 1598-1609.	2.9	2
60	Hydrogen generation by hydrolysis of NaBH4 using nanocomposites. , 2021, , 231-248.		1
61	Carbon-based nanostructures and nanomaterials., 2021,, 103-130.		1
62	1-Amino-5-benzoyl-4-phenylpyrimidin-2(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o2476-o2478.	0.2	0
63	Biocatalysis: Fundamentals and solvent parameters. , 2021, , 73-84.		0
64	Graphene Functionalizations on Copper by Spectroscopic Techniques. Carbon Nanostructures, 2019, , 313-333.	0.1	0