
Karen C Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273414/publications.pdf Version: 2024-02-01

KADEN C YOUNG

#	Article	IF	CITATIONS
1	Long-term reparative effects of mesenchymal stem cell therapy following neonatal hyperoxia-induced lung injury. Pediatric Research, 2013, 73, 46-53.	2.3	101
2	Inhibition of the SDF-1/CXCR4 Axis Attenuates Neonatal Hypoxia-Induced Pulmonary Hypertension. Circulation Research, 2009, 104, 1293-1301.	4.5	83
3	The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury. PLoS ONE, 2016, 11, e0164269.	2.5	64
4	Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Respiratory Research, 2017, 18, 137.	3.6	46
5	Toll-like receptor 4–deficient mice are resistant to chronic hypoxia-induced pulmonary hypertension. Experimental Lung Research, 2010, 36, 111-119.	1.2	41
6	Antagonism of CXCR7 attenuates chronic hypoxia–induced pulmonary hypertension. Pediatric Research, 2012, 71, 682-688.	2.3	37
7	The Association between Early Tracheal Colonization and Bronchopulmonary Dysplasia. Journal of Perinatology, 2005, 25, 403-407.	2.0	33
8	Caspase-1 Inhibition Attenuates Hyperoxia-induced Lung and Brain Injury in Neonatal Mice. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 341-354.	2.9	33
9	CXCR4 Blockade Attenuates Hyperoxia-Induced Lung Injury in Neonatal Rats. Neonatology, 2015, 107, 304-311.	2.0	24
10	Inhibition of Rac1 Signaling Downregulates Inflammasome Activation and Attenuates Lung Injury in Neonatal Rats Exposed to Hyperoxia. Neonatology, 2017, 111, 280-288.	2.0	24
11	Soluble Klotho, a biomarker and therapeutic strategy to reduce bronchopulmonary dysplasia and pulmonary hypertension in preterm infants. Scientific Reports, 2020, 10, 12368.	3.3	22
12	Riociguat prevents hyperoxia-induced lung injury and pulmonary hypertension in neonatal rats without effects on long bone growth. PLoS ONE, 2018, 13, e0199927.	2.5	18
13	Stem cell factor improves lung recovery in rats following neonatal hyperoxia-induced lung injury. Pediatric Research, 2013, 74, 682-688.	2.3	17
14	Bone Marrow-Derived c-kit ⁺ Cells Attenuate Neonatal Hyperoxia-Induced Lung Injury. Cell Transplantation, 2015, 24, 85-95.	2.5	17
15	Amniotic fluid-derived extracellular vesicles: characterization and therapeutic efficacy in an experimental model of bronchopulmonary dysplasia. Cytotherapy, 2021, 23, 1097-1107.	0.7	17
16	TNFα-stimulated protein 6 (TSG-6) reduces lung inflammation in an experimental model of bronchopulmonary dysplasia. Pediatric Research, 2019, 85, 390-397.	2.3	16
17	Intra-Amniotic Soluble Endoglin Impairs Lung Development in Neonatal Rats. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 468-476.	2.9	15
18	Recombinant CCN1 prevents hyperoxia-induced lung injury in neonatal rats. Pediatric Research, 2017, 82, 863-871.	2.3	15

KAREN C YOUNG

#	Article	IF	CITATIONS
19	Neonatal hyperoxia exposure induces aortic biomechanical alterations and cardiac dysfunction in juvenile rats. Physiological Reports, 2020, 8, e14334.	1.7	13
20	Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats. Scientific Reports, 2021, 11, 8791.	3.3	13
21	Circulating extracellular vesicles activate the pyroptosis pathway in the brain following ventilation-induced lung injury. Journal of Neuroinflammation, 2021, 18, 310.	7.2	13
22	Mesenchymal Stem Cell-derived Extracellular Vesicles Prevent Experimental Bronchopulmonary Dysplasia Complicated By Pulmonary Hypertension. Stem Cells Translational Medicine, 2022, 11, 828-840.	3.3	13
23	Effects of Klotho supplementation on hyperoxia-induced renal injury in a rodent model of postnatal nephrogenesis. Pediatric Research, 2020, 88, 565-570.	2.3	11
24	The Role of Endothelin Converting Enzyme Inhibition during Group B Streptococcus–Induced Pulmonary Hypertension in Newborn Piglets. Pediatric Research, 2003, 54, 387-392.	2.3	10
25	Antagonism of stem cell factor/c-kit signaling attenuates neonatal chronic hypoxia-induced pulmonary vascular remodeling. Pediatric Research, 2016, 79, 637-646.	2.3	10
26	Comparative Effects of Bone Marrow-derived Versus Umbilical Cord Tissue Mesenchymal Stem Cells in an Experimental Model of Bronchopulmonary Dysplasia. Stem Cells Translational Medicine, 2022, 11, 189-199.	3.3	9
27	The Effect of a Nebulized NO Donor, DPTA/NO, on Acute Hypoxic Pulmonary Hypertension in Newborn Piglets. Neonatology, 2004, 85, 195-202.	2.0	8
28	Effects of a Nebulized NONOate, DPTA/NO, on Group B Streptococcus–Induced Pulmonary Hypertension in Newborn Piglets. Pediatric Research, 2005, 57, 378-383.	2.3	8
29	Intra-tracheal administration of a naked plasmid expressing stromal derived factor-1 improves lung structure in rodents with experimental bronchopulmonary dysplasia. Respiratory Research, 2019, 20, 255.	3.6	7
30	Stem cells in cardiopulmonary development: Implications for novel approaches to therapy for pediatric cardiopulmonary disease. Progress in Pediatric Cardiology, 2008, 25, 37-49.	0.4	5
31	Placental dysfunction and impaired fetal growth: a relationship with bronchopulmonary dysplasia and pulmonary hypertension. Thorax, 2022, 77, 220-221.	5.6	4
32	Systemic delivery of large-scale manufactured Wharton's Jelly mesenchymal stem cell-derived extracellular vesicles improves cardiac function after myocardial infarction. , 2022, 2, .		4
33	Educational Review: The Impact of Perinatal Oxidative Stress on the Developing Kidney. Frontiers in Pediatrics, 0, 10, .	1.9	4
34	Reye's syndrome in a 17-year-old male: is this disease really disappearing?. Digestive Diseases and Sciences, 2002, 47, 1959-1961.	2.3	2
35	Should All Extremely Premature Infants Be Screened for Pulmonary Hypertension?. Neonatology, 2018, 113, 89-91.	2.0	2
36	Newborn Girl with Massive Hepatomegaly, Anemia, and Thrombocytopenia. Journal of Pediatrics, 2008, 152, 129-132.	1.8	1

#	Article	IF	CITATIONS
37	Cell-Based Therapy for Neonatal Lung Diseases. , 2019, , 347-361.		Ο