Tomislav FrišÄić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273383/publications.pdf

Version: 2024-02-01

275 papers 25,278 citations

80 h-index 7931 149 g-index

341 all docs

341 docs citations

times ranked

341

14573 citing authors

#	Article	IF	Citations
1	Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 2012, 41, 413-447.	18.7	2,281
2	Mechanochemistry: A Force of Synthesis. ACS Central Science, 2017, 3, 13-19.	5.3	868
3	Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Crystal Growth and Design, 2009, 9, 1621-1637.	1.4	637
4	Mechanochemistry for Synthesis. Angewandte Chemie - International Edition, 2020, 59, 1018-1029.	7.2	615
5	Supramolecular Control of Reactivity in the Solid State: From Templates to Ladderanes to Metalâ 'Organic Frameworks. Accounts of Chemical Research, 2008, 41, 280-291.	7.6	613
6	Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chemical Society Reviews, 2012, 41, 3493.	18.7	531
7	Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chemistry, 2013, 5, 66-73.	6.6	493
8	The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm, 2009, 11, 418-426.	1.3	479
9	A Cocrystal Strategy to Tune the Luminescent Properties of Stilbene‶ype Organic Solidâ€State Materials. Angewandte Chemie - International Edition, 2011, 50, 12483-12486.	7. 2	463
10	Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol. Advanced Materials, 2009, 21, 3905-3909.	11.1	451
11	Rapid Roomâ€Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie - International Edition, 2010, 49, 9640-9643.	7. 2	378
12	Ion―and Liquidâ€Assisted Grinding: Improved Mechanochemical Synthesis of Metal–Organic Frameworks Reveals Salt Inclusion and Anion Templating. Angewandte Chemie - International Edition, 2010, 49, 712-715.	7.2	343
13	Screening for Inclusion Compounds and Systematic Construction of Three-Component Solids by Liquid-Assisted Grinding. Angewandte Chemie - International Edition, 2006, 45, 7546-7550.	7.2	339
14	Metal–organic frameworks meet scalable and sustainable synthesis. Green Chemistry, 2017, 19, 2729-2747.	4.6	327
15	New opportunities for materials synthesis using mechanochemistry. Journal of Materials Chemistry, 2010, 20, 7599.	6.7	313
16	Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chemical Communications, 2016, 52, 7760-7781.	2.2	303
17	In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nature Communications, 2015, 6, 6662.	5.8	294
18	Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients. Crystal Growth and Design, 2008, 8, 1697-1712.	1.4	293

#	Article	IF	Citations
19	Screening for Pharmaceutical Cocrystal Hydrates via Neat and Liquid-Assisted Grinding. Molecular Pharmaceutics, 2007, 4, 347-354.	2.3	288
20	Supramolecular Construction of Molecular Ladders in the Solid State. Angewandte Chemie - International Edition, 2004, 43, 232-236.	7.2	269
21	Shaping Crystals with Light: Crystal-to-Crystal Isomerization and Photomechanical Effect in Fluorinated Azobenzenes. Journal of the American Chemical Society, 2013, 135, 12556-12559.	6.6	268
22	Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nature Materials, 2007, 6, 206-209.	13.3	266
23	Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks. Chemical Communications, 2016, 52, 2133-2136.	2.2	256
24	Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals. Journal of the American Chemical Society, 2006, 128, 2806-2807.	6.6	250
25	Mechanochemistry for Organic Chemists: An Update. European Journal of Organic Chemistry, 2018, 2018, 18-33.	1.2	245
26	Isostructural Materials Achieved by Using Structurally Equivalent Donors and Acceptors in Halogenâ€Bonded Cocrystals. Chemistry - A European Journal, 2008, 14, 747-753.	1.7	236
27	The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm, 2012, 14, 2350.	1.3	226
28	Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm, 2009, 11, 743.	1.3	214
29	Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal. CrystEngComm, 2009, 11, 470-481.	1.3	204
30	Benefits of cocrystallisation in pharmaceutical materials science: an update. Journal of Pharmacy and Pharmacology, 2010, 62, 1547-1559.	1.2	200
31	<i>In Situ</i> Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138, 2929-2932.	6.6	194
32	A Stepwise Mechanism for the Mechanochemical Synthesis of Halogen-Bonded Cocrystal Architectures. Journal of the American Chemical Society, 2008, 130, 7524-7525.	6.6	184
33	Facile Mechanosynthesis of Amorphous Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2011, 133, 14546-14549.	6.6	184
34	High Reactivity of Metal–Organic Frameworks under Grinding Conditions: Parallels with Organic Molecular Materials. Angewandte Chemie - International Edition, 2010, 49, 3916-3919.	7.2	183
35	Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials. Chemical Science, 2012, 3, 2495-2500.	3.7	181
36	Metal-catalyzed organic reactions using mechanochemistry. Tetrahedron Letters, 2015, 56, 4253-4265.	0.7	172

#	Article	IF	CITATIONS
37	Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis. Chemical Science, 2011, 2, 696.	3.7	165
38	Laboratory Realâ€Time and In Situ Monitoring of Mechanochemical Milling Reactions by Raman Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 6193-6197.	7.2	160
39	Mechanochemistry for Synthesis. Angewandte Chemie, 2020, 132, 1030-1041.	1.6	153
40	Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists. Journal of Physical Chemistry Letters, 2015, 6, 4129-4140.	2.1	149
41	Realâ€Time Inâ€Situ Powder Xâ€ray Diffraction Monitoring of Mechanochemical Synthesis of Pharmaceutical Cocrystals. Angewandte Chemie - International Edition, 2013, 52, 11538-11541.	7.2	141
42	Mechanochemistry. Chemical Society Reviews, 2013, 42, 7494.	18.7	139
43	Photo-mechanical azobenzene cocrystals and in situ X-ray diffraction monitoring of their optically-induced crystal-to-crystal isomerisation. Chemical Science, 2014, 5, 3158-3164.	3.7	139
44	Mechanochemical Ruthenium-Catalyzed Olefin Metathesis. Journal of the American Chemical Society, 2015, 137, 2476-2479.	6.6	134
45	Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 2013, 15, 2121.	4.6	133
46	In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nature Protocols, 2013, 8, 1718-1729.	5.5	132
47	Single-crystal-to-single-crystal $[2\hat{A}+\hat{A}2]$ photodimerizations: from discovery to design. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, 351-363.	0.4	129
48	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	3.2	120
49	Chemistry 2.0: Developing a New, Solvent-Free System of Chemical Synthesis Based on Mechanochemistry. Synlett, 2017, 28, 2066-2092.	1.0	119
50	A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. Chemical Communications, 2015, 51, 4032-4035.	2.2	117
51	Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules, 2017, 22, 144.	1.7	116
52	Halogen-Bonded Cocrystals as Optical Materials: Next-Generation Control over Light–Matter Interactions. Crystal Growth and Design, 2018, 18, 1245-1259.	1.4	115
53	Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas. Chemical Communications, 2014, 50, 5248-5250.	2.2	114
54	Mechanosynthesis of the Metallodrug Bismuth Subsalicylate from Bi ₂ O ₃ and Structure of Bismuth Salicylate without Auxiliary Organic Ligands. Angewandte Chemie - International Edition, 2011, 50, 7858-7861.	7.2	110

#	Article	IF	CITATIONS
55	Cocrystal architecture and properties: design and building of chiral and racemic structures by solid–solid reactions. Faraday Discussions, 2007, 136, 167.	1.6	103
56	Development of CN Coupling Using Mechanochemistry: Catalytic Coupling of Arylsulfonamides and Carbodiimides. Angewandte Chemie - International Edition, 2014, 53, 9321-9324.	7.2	103
57	Exploring cocrystal–cocrystal reactivity via liquid-assisted grinding: the assembling of racemic and dismantling of enantiomeric cocrystals. Chemical Communications, 2006, , 5009-5011.	2.2	102
58	Towards an environmentally-friendly laboratory: dimensionality and reactivity in the mechanosynthesis of metal–organic compounds. Chemical Communications, 2010, 46, 9191.	2.2	101
59	Powder X-ray Diffraction as an Emerging Method to Structurally Characterize Organic Solids. Organic Letters, 2007, 9, 3133-3136.	2.4	100
60	Guest-Directed Assembly of Caffeine and Succinic Acid into Topologically Different Heteromolecular Host Networks upon Grinding. Crystal Growth and Design, 2008, 8, 1605-1609.	1.4	100
61	â€Template-switching': a supramolecular strategy for the quantitative, gram-scale construction of a molecular target in the solid state. Chemical Communications, 2003, , 1306-1307.	2.2	99
62	Testing the Sensitivity of Terahertz Spectroscopy to Changes in Molecular and Supramolecular Structure: A Study of Structurally Similar Cocrystals. Crystal Growth and Design, 2009, 9, 1452-1460.	1.4	99
63	Schiff bases derived from hydroxyaryl aldehydes: molecular and crystal structure, tautomerism, quinoid effect, coordination compounds. Macedonian Journal of Chemistry and Chemical Engineering, 2013, 29, 117.	0.2	99
64	The First Synthesis of the Sterically Encumbered Adamantoid Phosphazane P ₄ (N ^{<i>t</i>} Bu) ₆ : Enabled by Mechanochemistry. Angewandte Chemie - International Edition, 2016, 55, 12736-12740.	7.2	98
65	In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal–Organic Framework HKUST-1: Effect of Liquid Additives on the Milling Reactivity. Inorganic Chemistry, 2017, 56, 6599-6608.	1.9	98
66	Mechanochemical Phosphorylation of Polymers and Synthesis of Flame-Retardant Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2019, 7, 7951-7959.	3.2	98
67	Rational Synthesis of Mixed-Metal Microporous Metal–Organic Frameworks with Controlled Composition Using Mechanochemistry. Chemistry of Materials, 2019, 31, 5494-5501.	3.2	96
68	Structural Equivalence of Br and I Halogen Bonds: A Route to Isostructural Materials with Controllable Properties. Chemistry of Materials, 2008, 20, 6623-6626.	3.2	95
69	Mineral Surface in Calcified Plaque Is Like That of Bone. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2030-2034.	1.1	95
70	Exploring the Effect of Temperature on a Mechanochemical Reaction by in Situ Synchrotron Powder X-ray Diffraction. Crystal Growth and Design, 2016, 16, 2342-2347.	1.4	93
71	Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions. Journal of the American Chemical Society, 2017, 139, 7952-7957.	6.6	93
72	Softening and Hardening of Macro―and Nanoâ€Sized Organic Cocrystals in a Singleâ€Crystal Transformation. Angewandte Chemie - International Edition, 2011, 50, 8642-8646.	7.2	92

#	Article	IF	CITATIONS
73	Mechanosynthesis of ultra-small monodisperse amine-stabilized gold nanoparticles with controllable size. Green Chemistry, 2014, 16, 86-89.	4.6	92
74	Template-Controlled Synthesis in the Solid-State. Topics in Current Chemistry, 0, , 201-221.	4.0	91
75	Directed assembly and reactivity of olefins within a one-dimensional ladder-like coordination polymer based on a dinuclear Zn(ii) platform. Chemical Communications, 2005, , 3974.	2.2	87
76	Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions. Chemical Science, 2014, 5, 3576.	3.7	87
77	Experimental and database studies of three-centered halogen bonds with bifurcated acceptors present in molecular crystals, cocrystals and salts. CrystEngComm, 2011, 13, 3224.	1.3	85
78	Scalable Mechanochemical Amorphization of Bimetallic Cuâ^'Zn MOF-74 Catalyst for Selective CO ₂ Reduction Reaction to Methanol. ACS Applied Materials & Interfaces, 2021, 13, 3070-3077.	4.0	84
79	Mechanochemistry of magnesium oxide revisited: facile derivatisation of pharmaceuticals using coordination and supramolecular chemistry. Chemical Communications, 2010, 46, 6368.	2.2	82
80	Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discussions, 2014, 170, 155-167.	1.6	81
81	A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents. Green Chemistry, 2012, 14, 2462.	4.6	80
82	Click Mechanochemistry: Quantitative Synthesis of "Ready to Use―Chiral Organocatalysts by Efficient Twoâ€Fold Thiourea Coupling to Vicinal Diamines. Chemistry - A European Journal, 2012, 18, 8464-8473.	1.7	79
83	Predicting stoichiometry and structure of solvates. Chemical Communications, 2010, 46, 2224.	2.2	78
84	Halogen-bonded cocrystallization with phosphorus, arsenic and antimony acceptors. Nature Communications, 2019, 10, 61.	5.8	78
85	A cocrystallisation-based strategy to construct isostructural solids. New Journal of Chemistry, 2008, 32, 1776.	1.4	77
86	Enthalpy <i>vs.</i> friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal–organic frameworks. Chemical Science, 2018, 9, 2525-2532.	3.7	77
87	Desymmetrisation of aromatic diamines and synthesis of non-symmetrical thiourea derivatives by click-mechanochemistry. Chemical Communications, 2012, 48, 9705.	2.2	76
88	Design and Construction of a 2D Metal Organic Framework with Multiple Cavities:Â A Nonregular Net with a Paracyclophane that Codes for Multiply Fused Nodes. Journal of the American Chemical Society, 2005, 127, 14160-14161.	6.6	75
89	New solid forms of artemisinin obtained through cocrystallisation. CrystEngComm, 2010, 12, 4038.	1.3	75
90	A stepwise mechanism and the role of water in the liquid-assisted grinding synthesis of metal–organic materials. CrystEngComm, 2010, 12, 2409.	1.3	74

#	Article	IF	CITATIONS
91	Trapping Reactive Intermediates by Mechanochemistry: Elusive Aryl <i>N</i> â€Thiocarbamoylbenzotriazoles as Benchâ€Stable Reagents. Angewandte Chemie - International Edition, 2015, 54, 8440-8443.	7.2	74
92	Quantitative in situ and real-time monitoring of mechanochemical reactions. Faraday Discussions, 2014, 170, 203-221.	1.6	73
93	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry. Journal of the American Chemical Society, 2019, 141, 19214-19220.	6.6	73
94	Solventâ€Free Enzyme Activity: Quick, High‥ielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angewandte Chemie - International Edition, 2018, 57, 2621-2624.	7.2	72
95	Carbon Dioxide Sensitivity of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2014, 53, 7471-7474.	7.2	71
96	Heteroditopic Rebek's Imide Directs the Reactivity of Homoditopic Olefins within Desolvated Quaternary Assemblies in the Solid State. Angewandte Chemie - International Edition, 2006, 45, 646-650.	7.2	70
97	Exploring the relationship between cocrystal stability and symmetry: is Wallach's rule applicable to multi-component solids?. Chemical Communications, 2008, , 1644.	2.2	70
98	A mechanochemical strategy for oxidative addition: remarkable yields and stereoselectivity in the halogenation of organometallic Re(<scp>i</scp>) complexes. Green Chemistry, 2014, 16, 1087-1092.	4.6	70
99	Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving Structurally Unknown Phases. Chemistry - A European Journal, 2017, 23, 13941-13949.	1.7	70
100	Reversing the code of a template-directed solid-state synthesis: a bipyridine template that directs a single-crystal-to-single-crystal $[2+2]$ photodimerisation of a dicarboxylic acid. Chemical Communications, 2005, , 5748.	2.2	69
101	The Mineral Phase of Calcified Cartilage: Its Molecular Structure and Interface with the Organic Matrix. Biophysical Journal, 2009, 96, 3372-3378.	0.2	67
102	Clean and Efficient Synthesis Using Mechanochemistry: Coordination Polymers, Metal-Organic Frameworks and Metallodrugs. Croatica Chemica Acta, 2012, 85, 367-378.	0.1	67
103	A Test for Homology:  Photoactive Crystalline Assemblies Involving Linear Templates Based on a Homologous Series of Phloroglucinols. Organic Letters, 2004, 6, 4647-4650.	2.4	64
104	Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks. Chemical Science, 2020, 11, 2141-2147.	3.7	64
105	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	2.2	63
106	A Threeâ€Component Modular Strategy to Extend and Link Coordination Complexes by Using Halogen Bonds to O, S and i∈ Acceptors. Chemistry - A European Journal, 2010, 16, 7400-7403.	1.7	62
107	Enzymatic depolymerization of highly crystalline polyethylene terephthalate enabled in moist-solid reaction mixtures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	62
108	Oneâ€Pot Mechanosynthesis with Three Levels of Molecular Selfâ€Assembly: Coordination Bonds, Hydrogen Bonds and Host–Guest Inclusion. Chemistry - A European Journal, 2009, 15, 12644-12652.	1.7	61

#	Article	IF	CITATIONS
109	One-step, solvent-free mechanosynthesis of silver nanoparticle-infused lignin composites for use as highly active multidrug resistant antibacterial filters. RSC Advances, 2016, 6, 58365-58370.	1.7	61
110	Modification of luminescent properties of a coumarin derivative by formation of multi-component crystals. CrystEngComm, 2012, 14, 5121.	1.3	59
111	The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy. Beilstein Journal of Organic Chemistry, 2017, 13, 2160-2168.	1.3	58
112	Highly Photostable and Fluorescent Microporous Solids Prepared via Solid-State Entrapment of Boron Dipyrromethene Dyes in a Nascent Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 16882-16887.	6.6	56
113	Simple, scalable mechanosynthesis of metal–organic frameworks using liquid-assisted resonant acoustic mixing (LA-RAM). Chemical Science, 2020, 11, 7578-7584.	3.7	55
114	Tunable recognition of the steroid α-face by adjacent π-electron density. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13216-13221.	3.3	54
115	General application of mechanochemistry to templated solid-state reactivity: rapid and solvent-free access to crystalline supermolecules. Chemical Communications, 2008, , 5713.	2.2	52
116	Oxidative Mechanochemistry: Direct, Roomâ€Temperature, Solventâ€Free Conversion of Palladium and Gold Metals into Soluble Salts and Coordination Complexes. Angewandte Chemie - International Edition, 2018, 57, 2667-2671.	7.2	52
117	Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: Unlocking the latent energetic behavior of ZIFs. Science Advances, 2019, 5, eaav9044.	4.7	52
118	Mechanosynthesis of nitrosobenzenes: a proof-of-principle study in combining solvent-free synthesis with solvent-free separations. Green Chemistry, 2012, 14, 1597.	4.6	50
119	Persistent One-Dimensional Face-to-Face π-Stacks within Organic Cocrystals. Crystal Growth and Design, 2006, 6, 2427-2428.	1.4	49
120	Challenging the Ostwald rule of stages in mechanochemical cocrystallisation. Chemical Science, 2020, 11, 10092-10100.	3.7	49
121	Minerals with metal-organic framework structures. Science Advances, 2016, 2, e1600621.	4.7	48
122	Efficient and Rapid Mechanochemical Assembly of Platinum(II) Squares for Guanine Quadruplex Targeting. Journal of the American Chemical Society, 2017, 139, 16913-16922.	6.6	48
123	Mechanoenzymatic Breakdown of Chitinous Material to <i>N</i> â€Acetylglucosamine: The Benefits of a Solventless Environment. ChemSusChem, 2019, 12, 3481-3490.	3.6	47
124	Solid state grinding as a tool to aid enantiomeric resolution by cocrystallisation. Chemical Communications, 2012, 48, 11340.	2.2	46
125	Mimicking mineral neogenesis for the clean synthesis of metal–organic materials from mineral feedstocks: coordination polymers, MOFs and metal oxide separation. Green Chemistry, 2014, 16, 121-132.	4.6	46
126	Highlights from Faraday discussion 170: Challenges and opportunities of modern mechanochemistry, Montreal, Canada, 2014. Chemical Communications, 2015, 51, 6248-6256.	2,2	45

#	Article	IF	CITATIONS
127	Microporosity of a Guanidinium Organodisulfonate Hydrogenâ€Bonded Framework. Angewandte Chemie - International Edition, 2020, 59, 1997-2002.	7.2	45
128	Introducing Students to Mechanochemistry via Environmentally Friendly Organic Synthesis Using a Solvent-Free Mechanochemical Preparation of the Antidiabetic Drug Tolbutamide. Journal of Chemical Education, 2019, 96, 766-771.	1.1	44
129	Engineering cocrystal and polymorph architecture via pseudoseeding. Chemical Communications, 2009, , 773.	2.2	43
130	Accelerated ageing reactions: towards simpler, solvent-free, low energy chemistry. Green Chemistry, 2020, 22, 5881-5901.	4.6	43
131	A Large Family of Halogen-Bonded Cocrystals Involving Metal–Organic Building Blocks with Open Coordination Sites. Crystal Growth and Design, 2017, 17, 6169-6173.	1.4	42
132	Comparison of isomeric <i>meta</i> - and <i>para</i> -diiodotetrafluorobenzene as halogen bond donors in crystal engineering. New Journal of Chemistry, 2018, 42, 10584-10591.	1.4	42
133	Real-Time in Situ Monitoring of Particle and Structure Evolution in the Mechanochemical Synthesis of UiO-66 Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 49-54.	1.4	42
134	Switching between halogen- and hydrogen-bonding in stoichiometric variations of a cocrystal of a phosphine oxide. CrystEngComm, 2012, 14, 6110.	1.3	41
135	Synthesis of an extended halogen-bonded metal–organic structure in a one-pot mechanochemical reaction that combines covalent bonding, coordination chemistry and supramolecular synthesis. CrystEngComm, 2014, 16, 10169-10172.	1.3	41
136	Controlling Dichroism of Molecular Crystals by Cocrystallization. Crystal Growth and Design, 2016, 16, 541-545.	1.4	41
137	A chlorine-free protocol for processing germanium. Science Advances, 2017, 3, e1700149.	4.7	41
138	A rational approach to screen for hydrated forms of the pharmaceutical derivative magnesium naproxen using liquid-assisted grinding. CrystEngComm, 2011, 13, 3125.	1.3	40
139	Photo-induced motion of azo dyes in organized media: from single and liquid crystals, to MOFs and machines. CrystEngComm, 2016, 18, 7204-7211.	1.3	40
140	In situ monitoring of mechanochemical synthesis of calcium urea phosphate fertilizer cocrystal reveals highly effective water-based autocatalysis. Chemical Science, 2020, 11, 2350-2355.	3.7	40
141	Mechanically Activated Solvent-Free Assembly of Ultrasmall Bi ₂ S ₃ Nanoparticles: A Novel, Simple, and Sustainable Means To Access Chalcogenide Nanoparticles. Chemistry of Materials, 2017, 29, 7766-7773.	3.2	39
142	Computational evaluation of metal pentazolate frameworks: inorganic analogues of azolate metal–organic frameworks. Chemical Science, 2018, 9, 3367-3375.	3.7	39
143	Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. ChemBioChem, 2020, 21, 742-758.	1.3	38
144	Cu ²⁺ sorption from aqueous media by a recyclable Ca ²⁺ framework. Inorganic Chemistry Frontiers, 2017, 4, 773-781.	3.0	37

#	Article	IF	CITATIONS
145	Mechanochemical methods for the transfer of electrons and exchange of ions: inorganic reactivity from nanoparticles to organometallics. Chemical Society Reviews, 2021, 50, 8279-8318.	18.7	37
146	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 3222-3228.	1.4	36
147	Linker Substituents Control the Thermodynamic Stability in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 21720-21729.	6.6	36
148	In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive. CheM, 2021, 7, 1639-1652.	5.8	36
149	Observation of a two-dimensional halogen-bonded cocrystal at sub-monolayer coverage using synchrotron X-ray diffraction. Chemical Communications, 2011, 47, 2526-2528.	2.2	35
150	Azoâcphenyl stacking: a persistent self-assembly motif guides the assembly of fluorinated cis-azobenzenes into photo-mechanical needle crystals. Chemical Communications, 2016, 52, 2103-2106.	2.2	35
151	Efficient Enzymatic Hydrolysis of Biomass Hemicellulose in the Absence of Bulk Water. Molecules, 2019, 24, 4206.	1.7	35
152	Solventâ€Free Enzyme Activity: Quick, Highâ€Yielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angewandte Chemie, 2018, 130, 2651-2654.	1.6	34
153	Sizeâ€Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angewandte Chemie - International Edition, 2019, 58, 6230-6234.	7.2	34
154	Solvent-Free Mechanochemical Synthesis of Ultrasmall Nickel Phosphide Nanoparticles and Their Application as a Catalyst for the Hydrogen Evolution Reaction (HER). ACS Sustainable Chemistry and Engineering, 2020, 8, 12014-12024.	3.2	34
155	Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time <i>In Situ</i> Monitoring. Accounts of Chemical Research, 2022, 55, 1262-1277.	7.6	34
156	Mechanochemistry: a web themed issue. Chemical Communications, 2013, 49, 5349.	2.2	33
157	Cyclophanes and Ladderanes: Molecular Targets for Supramolecular Chemists. Supramolecular Chemistry, 2005, 17, 47-51.	1.5	32
158	Functionality in metal–organic framework minerals: proton conductivity, stability and potential for polymorphism. Chemical Science, 2019, 10, 4923-4929.	3.7	32
159	One-step ligand exchange and switching from hydrophobic to water-stable hydrophilic superparamagnetic iron oxide nanoparticles by mechanochemical milling. Chemical Communications, 2016, 52, 3054-3057.	2.2	31
160	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 15788-15794.	4.0	31
161	Theoretical Prediction and Experimental Evaluation of Topological Landscape and Thermodynamic Stability of a Fluorinated Zeolitic Imidazolate Framework. Chemistry of Materials, 2019, 31, 3777-3783.	3.2	31
162	The First Synthesis of the Sterically Encumbered Adamantoid Phosphazane P ₄ (N ^{<i>t</i>} Bu) ₆ : Enabled by Mechanochemistry. Angewandte Chemie, 2016, 128, 12928-12932.	1.6	30

#	Article	IF	CITATIONS
163	Welcoming Gallium- and Indium-Fumarate MOFs to the Family: Synthesis, Comprehensive Characterization, Observation of Porous Hydrophobicity, and CO ₂ Dynamics. ACS Applied Materials & Dynamics &	4.0	30
164	Crystal engineering rescues a solution organic synthesis in a cocrystallization that confirms the configuration of a molecular ladder. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10974-10979.	3.3	29
165	Assembly and dichroism of a four-component halogen-bonded metal–organic cocrystal salt solvate involving dicyanoaurate(I) acceptors. Faraday Discussions, 2017, 203, 441-457.	1.6	29
166	Towards Controlling the Reactivity of Enzymes in Mechanochemistry: Inert Surfaces Protect βâ€Glucosidase Activity During Ball Milling. ChemSusChem, 2020, 13, 106-110.	3.6	29
167	Characterisation of organic solid forms and real-time in situ monitoring of their transformations using solid-state fluorescence. CrystEngComm, 2013, 15, 5100.	1.3	28
168	A Step Towards a [2.2]Paracyclophane: A Single Crystal to Single Crystal Reaction Involving a Hydrogen-Bonded Molecular Assembly with Multiple Reaction Centres. Australian Journal of Chemistry, 2006, 59, 613.	0.5	27
169	Fluorinated azobenzenes with highly strained geometries for halogen bond-driven self-assembly in the solid state. CrystEngComm, 2015, 17, 73-80.	1.3	27
170	Use of a "Shoe-Last―Solid-State Template in the Mechanochemical Synthesis of High-Porosity RHO-Zinc Imidazolate. Journal of the American Chemical Society, 2018, 140, 10104-10108.	6.6	27
171	Isostructural organic binary-host frameworks with tuneable and diversely decorated inclusion cavities. CrystEngComm, 2012, 14, 7898.	1.3	26
172	In situ monitoring of vapour-induced assembly of pharmaceutical cocrystals using a benchtop powder X-ray diffractometer. Chemical Communications, 2016, 52, 5120-5123.	2.2	26
173	Redox-promoted associative assembly of metal–organic materials. Chemical Science, 2016, 7, 707-712.	3.7	25
174	Hypergolic Triggers as Coâ€crystal Formers: Coâ€crystallization for Creating New Hypergolic Materials with Tunable Energy Content. Angewandte Chemie - International Edition, 2019, 58, 18399-18404.	7.2	25
175	Disappearing Polymorphs in Metal–Organic Framework Chemistry: Unexpected Stabilization of a Layered Polymorph over an Interpenetrated Threeâ€Dimensional Structure in Mercury Imidazolate. Chemistry - A European Journal, 2020, 26, 1811-1818.	1.7	25
176	Self-assembled metal–organic squares derived from linear templates as exemplified by a polydentate ligand that provides access to both a polygon and polyhedron. Chemical Communications, 2004, , 270-271.	2.2	24
177	Isostructurality in three-component crystals achieved by the combination of persistent hydrogen bonding motifs and solvent inclusion. CrystEngComm, 2013, 15, 1332.	1.3	24
178	Rapid and facile solvent-free mechanosynthesis in a cell lysis mill: preparation and mechanochemical complexation of aminobenzoquinones. CrystEngComm, 2014, 16, 7180.	1.3	24
179	Solid-state mechanochemical ï‰-functionalization of poly(ethylene glycol). Beilstein Journal of Organic Chemistry, 2017, 13, 1963-1968.	1.3	24
180	Supramolecular imidazolium frameworks: direct analogues of metal azolate frameworks with charge-inverted node-and-linker structure. Chemical Communications, 2015, 51, 8924-8927.	2.2	22

#	Article	IF	CITATIONS
181	Thermodynamic Evidence of Structural Transformations in CO ₂ -Loaded Metal–Organic Framework Zn(Melm) ₂ from Heat Capacity Measurements. Journal of the American Chemical Society, 2020, 142, 4833-4841.	6.6	22
182	Mechanochemistry in transition metal-catalyzed reactions. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100524.	3.2	22
183	Molecular Recognition of Steroid Hormones in the Solid State: Stark Differences in Cocrystallization of \hat{l}^2 -Estradiol and Estrone. Crystal Growth and Design, 2015, 15, 1492-1501.	1.4	21
184	Metal–Organic Frameworks as Fuels for Advanced Applications: Evaluating and Modifying the Combustion Energy of Popular MOFs. Chemistry of Materials, 2019, 31, 4882-4888.	3.2	21
185	Rapid mechanoenzymatic saccharification of lignocellulosic biomass without bulk water or chemical pre-treatment. Green Chemistry, 2020, 22, 3877-3884.	4.6	21
186	Double inclusion of ferrocene within a doubly interpenetrated three-dimensional framework based on a resorcin[4]arene. Journal of Organometallic Chemistry, 2003, 666, 43-48.	0.8	20
187	Towards the systematic crystallisation of molecular ionic cocrystals: insights from computed crystal form landscapes. Faraday Discussions, 2018, 211, 401-424.	1.6	20
188	Database Investigation of Halogen Bonding and Halogen···Halogen Interactions between Porphyrins: Emergence of Robust Supramolecular Motifs and Frameworks. Crystal Growth and Design, 2021, 21, 1810-1832.	1.4	20
189	[2.2]Paracyclophane as a Target of the Organic Solid State: Emergent Properties via Supramolecular Construction. Israel Journal of Chemistry, 2012, 52, 53-59.	1.0	19
190	Carbodiimide insertion into sulfonimides: one-step route to azepine derivatives via a two-atom saccharin ring expansion. Chemical Communications, 2017, 53, 901-904.	2.2	19
191	Experimental and Theoretical Investigation of Structures, Stoichiometric Diversity, and Bench Stability of Cocrystals with a Volatile Halogen Bond Donor. Crystal Growth and Design, 2018, 18, 2387-2396.	1.4	19
192	Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(Etlm)2. Journal of Chemical Thermodynamics, 2018, 116, 341-351.	1.0	19
193	NMR-Enhanced Crystallography Aids Open Metal–Organic Framework Discovery Using Solvent-Free Accelerated Aging. Chemistry of Materials, 2020, 32, 4273-4281.	3.2	19
194	Understanding geology through crystal engineering: coordination complexes, coordination polymers and metal–organic frameworks as minerals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 539-559.	0.5	18
195	A diverse view of science to catalyse change. Nature Chemistry, 2020, 12, 773-776.	6.6	18
196	Halogen bonding to the azulene π-system: cocrystal design of pleochroism. Chemical Communications, 2020, 56, 15145-15148.	2.2	18
197	Mechanochemical reactions of cocrystals: comparing theory with experiment in the making and breaking of halogen bonds in the solid state. Chemical Communications, 2020, 56, 8293-8296.	2.2	18
198	Metalâ€Catalyzed Organic Reactions by Resonant Acoustic Mixing**. Angewandte Chemie - International Edition, 2022, 61, e202115030.	7.2	18

#	Article	IF	CITATIONS
199	Oxidative Mechanochemistry: Direct, Roomâ€Temperature, Solventâ€Free Conversion of Palladium and Gold Metals into Soluble Salts and Coordination Complexes. Angewandte Chemie, 2018, 130, 2697-2701.	1.6	17
200	Mechanochemical Synthesis, Accelerated Aging, and Thermodynamic Stability of the Organic Mineral Paceite and Its Cadmium Analogue. ACS Omega, 2019, 4, 5486-5495.	1.6	17
201	Catalytic Roomâ€Temperature Câ°'N Coupling of Amides and Isocyanates by Using Mechanochemistry. ChemSusChem, 2020, 13, 2966-2972.	3.6	17
202	Open versus Interpenetrated: Switchable Supramolecular Trajectories in Mechanosynthesis of a Halogen-Bonded Borromean Network. CheM, 2021, 7, 146-154.	5.8	17
203	Cold photo-carving of halogen-bonded co-crystals of a dye and a volatile co-former using visible light. Nature Chemistry, 2022, 14, 574-581.	6.6	17
204	Contrasts between organic participation in apatite biomineralization in brachiopod shell and vertebrate bone identified by nuclear magnetic resonance spectroscopy. Journal of the Royal Society Interface, 2011, 8, 282-288.	1.5	16
205	Mechanochemical Synthesis of Short DNA Fragments. Chemistry - A European Journal, 2020, 26, 8857-8861.	1.7	16
206	Combined Diffraction and Density Functional Theory Calculations of Halogen-Bonded Cocrystal Monolayers. Langmuir, 2013, 29, 14903-14911.	1.6	15
207	The monolayer structure of 1,2-bis(4-pyridyl)ethylene physisorbed on a graphite surface. Molecular Physics, 2013, 111, 73-79.	0.8	14
208	Geomimetic approaches in the design and synthesis of metal-organic frameworks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180221.	1.6	14
209	Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst. Beilstein Journal of Nanotechnology, 2019, 10, 2422-2427.	1.5	14
210	Microporosity of a Guanidinium Organodisulfonate Hydrogenâ€Bonded Framework. Angewandte Chemie, 2020, 132, 2013-2018.	1.6	14
211	Total Syntheses Supramolecular Style: Solid-State Construction of [2.2]Cyclophanes with Modular Control of Stereochemistry. Crystal Growth and Design, 2020, 20, 2584-2589.	1.4	14
212	The Morpholinyl Oxygen Atom as an Acceptor Site for Halogen-Bonded Cocrystallization of Organic and Metal–Organic Units. Crystal Growth and Design, 2020, 20, 3617-3624.	1.4	14
213	Metal–organic frameworks as hypergolic additives for hybrid rockets. Chemical Science, 2022, 13, 3424-3436.	3.7	14
214	A Template-Controlled Solid-State Reaction for the Organic Chemistry Laboratory. Journal of Chemical Education, 2005, 82, 1679.	1.1	13
215	Cocrystal trimorphism as a consequence of the orthogonality of halogen- and hydrogen-bonds synthons. Chemical Communications, 2019, 55, 14066-14069.	2.2	13
216	Environmentally-Friendly Designs and Syntheses of Metal-Organic Frameworks (MOFs). ACS Symposium Series, 2014, , 161-183.	0.5	12

#	Article	IF	CITATIONS
217	A Diverse View of Science to Catalyse Change. Journal of the American Chemical Society, 2020, 142, 14393-14396.	6.6	12
218	Heat capacity and thermodynamic functions of crystalline forms of the metal-organic framework zinc 2-methylimidazolate, Zn(Melm)2. Journal of Chemical Thermodynamics, 2019, 136, 160-169.	1.0	11
219	<i>Ab Initio</i> Prediction of Metal-Organic Framework Structures. Chemistry of Materials, 2020, 32, 5835-5844.	3.2	11
220	Thermodynamics Model for Mechanochemical Synthesis of Gold Nanoparticles: Implications for Solvent-Free Nanoparticle Production. ACS Applied Nano Materials, 2021, 4, 1886-1897.	2.4	11
221	Time-Dependent Density-Functional Theory for Modeling Solid-State Fluorescence Emission of Organic Multicomponent Crystals. Journal of Physical Chemistry A, 2018, 122, 7514-7521.	1.1	9
222	Three-component molecular assembly using mechanochemical grinding. Annales De Chimie: Science Des Materiaux, 2009, 34, 415-428.	0.2	9
223	Monolayer structures of 4,4′ bipyridine on graphite at sub-monolayer coverage. Molecular Physics, 2011, 109, 477-481.	0.8	8
224	Sizeâ€Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angewandte Chemie, 2019, 131, 6296-6300.	1.6	8
225	Solvent-free ageing reactions of rare earth element oxides: from geomimetic synthesis of new metal–organic materials towards a simple, environmentally friendly separation of scandium. Green Chemistry, 2020, 22, 4364-4375.	4.6	8
226	Mechanochemistry for sustainable and efficient dehydrogenation/hydrogenation. Canadian Journal of Chemistry, 2021, 99, 93-112.	0.6	8
227	Mechanochemistry <i>vs. </i> solution growth: striking differences in bench stability of a cimetidine salt based on a synthetic method. CrystEngComm, 2018, 20, 7242-7247.	1.3	7
228	Hypergolic Triggers as Coâ€crystal Formers: Coâ€crystallization for Creating New Hypergolic Materials with Tunable Energy Content. Angewandte Chemie, 2019, 131, 18570-18575.	1.6	7
229	Mechanochemical Metathesis between AgNO ₃ and NaX (X = Cl, Br, I) and Ag ₂ XNO ₃ Double-Salt Formation. Inorganic Chemistry, 2020, 59, 12200-12208.	1.9	7
230	A Diverse View of Science to Catalyse Change. Angewandte Chemie - International Edition, 2020, 59, 18306-18310.	7.2	7
231	Drug-Nutraceutical Co-Crystal and Salts for Making New and Improved Bi-Functional Analgesics. Pharmaceutics, 2020, 12, 1144.	2.0	7
232	Simplifying and expanding the scope of boron imidazolate framework (BIF) synthesis using mechanochemistry. Chemical Science, 2021, 12, 14499-14506.	3.7	7
233	Enantiomeric bis(μ-N,N′-hexamethylenedisalicylaldiminato)dicopper(II) complexes. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m313-m315.	0.4	6
234	Mechanochemical nanoparticle functionalization for liquid crystal nanocomposites based on COOH-pyridine heterosynthons. Journal of Materials Chemistry C, 2018, 6, 1789-1796.	2.7	6

#	Article	IF	CITATIONS
235	He I Photoelectron Spectra and Gas-Phase Electronic Structures of End-Functionalized [3]- and [5]-Ladderanes. Journal of Physical Chemistry A, 2008, 112, 1493-1496.	1.1	5
236	Chapter 7. Ball-milling Mechanochemical Synthesis of Coordination Bonds: Discrete Units, Polymers and Porous Materials. RSC Green Chemistry, 2014, , 151-189.	0.0	5
237	Why pregnenolone and progesterone, two structurally similar steroids, exhibit remarkably different cocrystallization with aromatic molecules. Physical Chemistry Chemical Physics, 2018, 20, 898-904.	1.3	5
238	Real-Time Observation of "Soft―Magic-Size Clusters during Hydrolysis of the Model Metallodrug Bismuth Disalicylate. Journal of the American Chemical Society, 2021, 143, 16332-16336.	6.6	5
239	Crystal and molecular structure of Rebek's imide. Journal of Chemical Crystallography, 2004, 34, 171-174.	0.5	4
240	Crystal and molecular structure of trans,trans-9,10-bis(4-pyridylethenyl)anthracene. Journal of Structural Chemistry, 2005, 46, S171-S174.	0.3	4
241	Increasing the Landscape of Structural Motifs in Co-crystals of Resorcinols with Ditopic Aromatics: A One-dimensional π-Stacked Hydrogen-Bonded Polymer Involving a Phenanthroline. Molecular Crystals and Liquid Crystals, 2006, 456, 155-162.	0.4	4
242	Application of Mechanochemistry in the Synthesis and Discovery of New Pharmaceutical Forms: Co-crystals, Salts and Coordination Compounds. RSC Drug Discovery Series, 2011, , 154-187.	0.2	4
243	Investigation of BINOL-3,3′-dicarboxylate as a ligand for the formation of extended coordination-based structures. Supramolecular Chemistry, 2018, 30, 488-503.	1.5	4
244	A diverse view of science to catalyse change. Chemical Science, 2020, 11, 9043-9047.	3.7	4
245	Metalâ€Catalyzed Organic Reactions by Resonant Acoustic Mixing**. Angewandte Chemie, 2022, 134, e202115030.	1.6	4
246	Dynamic behaviour in the solid state. CrystEngComm, 2011, 13, 4303.	1.3	3
247	From Mineralogy to Crystal Engineering: Potential for Polymorphism in the Metal–Organic Framework Mineral Zhemchuzhnikovite and Its Synthetic Analogues. Crystal Growth and Design, 2020, 20, 525-532.	1.4	3
248	Exploring the Scope of Macrocyclic "Shoe-last―Templates in the Mechanochemical Synthesis of RHO Topology Zeolitic Imidazolate Frameworks (ZIFs). Molecules, 2020, 25, 633.	1.7	3
249	Using terahertz time-domain spectroscopy to identify pharmaceutical cocrystals. , 2007, , .		2
250	Naturally occuring metal-organic frameworks. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s57-s58.	0.0	2
251	Professor William Jones and His Materials Chemistry Group: Innovations and Advances in the Chemistry of Solids. Crystal Growth and Design, 2019, 19, 1479-1487.	1.4	2
252	A Diverse View of Science to Catalyse Change. Angewandte Chemie, 2020, 132, 18462-18466.	1.6	2

#	Article	IF	Citations
253	A diverse view of science to catalyse change. Croatica Chemica Acta, 2020, 93, 77-81.	0.1	2
254	A Truly Polymorphic Issue in Honor of Prof Joel Bernstein. Crystal Growth and Design, 2020, 20, 2819-2823.	1.4	2
255	After 200 Years: The Structure of Bleach and Characterization of Hypohalite Ions by Single rystal Xâ€Ray Diffraction**. Angewandte Chemie - International Edition, 2021, 60, 24400-24405.	7.2	2
256	A diverse view of science to catalyse change: valuing diversity leads to scientific excellence, the progress of science and, most importantly, it is simply the right thing to do. We must value diversity not only in words, but also in actions. Canadian Journal of Chemistry, 2020, 98, 597-600.	0.6	2
257	'Template-switching': a supramolecular strategy for the quantitative, gram-scale construction of a molecular target in the solid state. Chemical Communications, 2003, , 1306-7.	2.2	2
258	2014 International year of crystallography celebration: North America. CrystEngComm, 2014, 16, 7160.	1.3	1
259	2016 New talent: crystal engineering at its biggest and strongest. CrystEngComm, 2016, 18, 3963-3967.	1.3	1
260	Cover Feature: Mechanochemistry for Organic Chemists: An Update (Eur. J. Org. Chem. 1/2018). European Journal of Organic Chemistry, 2018, 2018, 2-2.	1.2	1
261	Frontispiece: Mechanochemical Synthesis of Short DNA Fragments. Chemistry - A European Journal, 2020, 26, .	1.7	1
262	No regioselectivity for the steroid \hat{l}_{\pm} -face in cocrystallization of exemestane with aromatic cocrystal formers based on phenanthrene and pyrene. Canadian Journal of Chemistry, 2020, 98, 386-393.	0.6	1
263	Direct determination of the zero-field splitting for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Fe</mml:mi><td>nrow><m< td=""><td>ml:mrow><m< td=""></m<></td></m<></td></mml:mrow></mml:msup></mml:math>	nrow> <m< td=""><td>ml:mrow><m< td=""></m<></td></m<>	ml:mrow> <m< td=""></m<>

#	Article	IF	CITATIONS
271	After 200 Years: The Structure of Bleach and Characterization of Hypohalite Ions by Single rystal Xâ€Ray Diffraction**. Angewandte Chemie, 0, , .	1.6	O
272	Innentitelbild: After 200 Years: The Structure of Bleach and Characterization of Hypohalite Ions by Singleâ€Crystal Xâ€Ray Diffraction (Angew. Chem. 46/2021). Angewandte Chemie, 2021, 133, 24538-24538.	1.6	0
273	Multiphysics Simulation of Fuel Cell Catalyst Layer Performance with Pore-Scale Resolution from Ionomer Domains to Inter-Agglomerate Pores. ECS Meeting Abstracts, 2019, , .	0.0	0
274	Pore-Scale Modeling of the Fuel Cell Catalyst Layer: The Role of Nafion Thin Films. ECS Meeting Abstracts, 2020, MA2020-01, 124-124.	0.0	0
275	Making Crystals by Reactions in Crystals. Supramolecular Approaches to Crystal-to-Crystal Transformations within Molecular Co-Crystals. , 0, , 176-192.		0