Hongbo Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Frontiers in Plant Science, 2015, 6, 902.	1.7	379
2	Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Frontiers in Plant Science, 2016, 7, 67.	1.7	342
3	Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engineering, 2014, 62, 54-60.	1.6	287
4	Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology, 2015, 35, 425-437.	5.1	265
5	Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 2017, 575, 820-825.	3.9	214
6	Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiologiae Plantarum, 2013, 35, 2867-2878.	1.0	159
7	Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture, Ecosystems and Environment, 2017, 237, 274-279.	2.5	148
8	Recent Advances in Biochar Applications in Agricultural Soils: Benefits and Environmental Implications. Clean - Soil, Air, Water, 2012, 40, 1093-1098.	0.7	143
9	Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment, 2016, 568, 910-915.	3.9	139
10	Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. International Journal of Remote Sensing, 2009, 30, 4851-4866.	1.3	111
11	Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions. Water Resources Management, 2015, 29, 3195-3209.	1.9	111
12	Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31P NMR analysis. Science of the Total Environment, 2016, 569-570, 65-72.	3.9	103
13	Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Science of the Total Environment, 2017, 578, 90-99.	3.9	86
14	GABA-Alleviated Oxidative Injury Induced by Salinity, Osmotic Stress and their Combination by Regulating Cellular and Molecular Signals in Rice. International Journal of Molecular Sciences, 2019, 20, 5709.	1.8	82
15	Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils. Science of the Total Environment, 2017, 578, 47-55.	3.9	76
16	Periphytic biofilm: A buffer for phosphorus precipitation and release between sediments and water. Chemosphere, 2016, 144, 2058-2064.	4.2	73
17	Dynamic sediment discharge in the Hekou–Longmen region of Yellow River and soil and water conservation implications. Science of the Total Environment, 2017, 578, 56-66.	3.9	70
18	Physiological Mechanisms for High Salt Tolerance in Wild Soybean (Glycine soja) from Yellow River Delta, China: Photosynthesis, Osmotic Regulation, Ion Flux and antioxidant Capacity. PLoS ONE, 2013, 8, e83227.	1.1	67

#	Article	IF	CITATIONS
19	Surface erosion and underground leakage of yellow soil on slopes in karst regions of southwest <scp>China</scp> . Land Degradation and Development, 2018, 29, 2438-2448.	1.8	61
20	Dynamic Changes of Sediment Discharge and the Influencing Factors in the Yellow River, China, for the Recent 90 Years. Clean - Soil, Air, Water, 2012, 40, 303-309.	0.7	58
21	A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Frontiers in Plant Science, 2015, 6, 1237.	1.7	51
22	Soybean C2H2-Type Zinc Finger Protein GmZFP3 with Conserved QALGGH Motif Negatively Regulates Drought Responses in Transgenic Arabidopsis. Frontiers in Plant Science, 2016, 7, 325.	1.7	51
23	Salinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality. Current Genomics, 2016, 17, 207-214.	0.7	51
24	Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils. Scientific World Journal, The, 2015, 2015, 1-6.	0.8	49
25	Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil. Science of the Total Environment, 2016, 569-570, 390-394.	3.9	46
26	Effects of biochar application on Suaeda salsa growth and saline soil properties. Environmental Earth Sciences, 2016, 75, 1.	1.3	45
27	Effects of Underground Pore Fissures on Soil Erosion and Sediment Yield on Karst Slopes. Land Degradation and Development, 2017, 28, 1922-1932.	1.8	45
28	Heavy Metal Pollution in Sediments from Aquatic Ecosystems in China. Clean - Soil, Air, Water, 2013, 41, 878-882.	0.7	43
29	Transport of Calcium Ions into Mitochondria. Current Genomics, 2016, 17, 215-219.	0.7	42
30	ZmHsf05, a new heat shock transcription factor from Zea mays L. improves thermotolerance in Arabidopsis thaliana and rescues thermotolerance defects of the athsfa2 mutant. Plant Science, 2019, 283, 375-384.	1.7	42
31	Towards sustainable agriculture for the saltâ€affected soil. Land Degradation and Development, 2019, 30, 574-579.	1.8	41
32	Impacts of Coal Mining on the Aboveground Vegetation and Soil Quality: A Case Study of Qinxin Coal Mine in Shanxi Province, China. Clean - Soil, Air, Water, 2011, 39, 219-225.	0.7	40
33	N–P stoichiometry in soil and leaves of Pinus massoniana forest at different stand ages in the subtropical soil erosion area of China. Environmental Earth Sciences, 2016, 75, 1.	1.3	40
34	The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean. Scientific Reports, 2016, 6, 20366.	1.6	38
35	Improving Soil Enzyme Activities and Related Quality Properties of Reclaimed Soil by Applying Weathered Coal in Opencastâ€Mining Areas of the Chinese Loess Plateau. Clean - Soil, Air, Water, 2012, 40, 233-238.	0.7	37
36	Effects of Silicon on Photosynthetic Characteristics of Maize (<i>Zea mays</i> L.) on Alluvial Soil. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	36

#	Article	IF	CITATIONS
37	Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosusL.) Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	34
38	The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil. Science of the Total Environment, 2017, 578, 40-46.	3.9	34
39	Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke. Science of the Total Environment, 2016, 568, 891-898.	3.9	31
40	Potential Retention and Release Capacity of Phosphorus in the Newly Formed Wetland Soils from the Yellow River Delta, China. Clean - Soil, Air, Water, 2012, 40, 1131-1136.	0.7	30
41	Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean. Science of the Total Environment, 2016, 568, 899-909.	3.9	30
42	Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere. Science of the Total Environment, 2016, 568, 118-123.	3.9	26
43	Phototrophic periphyton techniques combine phosphorous removal and recovery for sustainable salt-soil zone. Science of the Total Environment, 2016, 568, 838-844.	3.9	26
44	The Runoff Declining Process and Water Quality in Songhuajiang River Catchment, China under Global Climatic Change. Clean - Soil, Air, Water, 2012, 40, 394-401.	0.7	23
45	Soil Seed Banks and Forest Succession Direction Reflect Soil Quality in Ziwuling Mountain, Loess Plateau, China. Clean - Soil, Air, Water, 2012, 40, 140-147.	0.7	23
46	Soil nutrient stoichiometry on linear sand dunes from a temperate desert in Central Asia. Catena, 2020, 195, 104847.	2.2	23
47	Nonadditive effects of biochar amendments on soil phosphorus fractions in two contrasting soils. Land Degradation and Development, 2018, 29, 2720-2727.	1.8	22
48	Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China. Science of the Total Environment, 2016, 568, 885-890.	3.9	21
49	Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	20
50	Responses of periphyton morphology, structure, and function to extreme nutrient loading. Environmental Pollution, 2016, 214, 878-884.	3.7	20
51	Regulating Environmental Factors of Nutrients Release from Wheat Straw Biochar for Sustainable Agriculture. Clean - Soil, Air, Water, 2013, 41, 697-701.	0.7	19
52	Phytoremediation of Cadmium ontaminated Soil by Two Jerusalem Artichoke (<i>Helianthus) Tj ETQq0 0 0 rg</i>	BT /Overlo 0.7	ck 10 Tf 50 1
53	Dynamic Changes of <i>Stipa bungeana</i> Steppe Species Diversity as Better Indicators for Soil Quality and Sustainable Utilization Mode in Yunwu Mountain Nature Reserve, Ningxia, China. Clean - Soil, Air, Water, 2012, 40, 127-133.	0.7	18

#	Article	IF	CITATIONS
55	TaHsfA2-1, a new gene for thermotolerance in wheat seedlings: Characterization and functional roles. Journal of Plant Physiology, 2020, 246-247, 153135.	1.6	18
56	Changes of sensitive microbial community in oil polluted soil in the coastal area in Shandong, China for ecorestoration. Ecotoxicology and Environmental Safety, 2021, 207, 111551.	2.9	18
57	Global Gene Expression of Kosteletzkya virginica Seedlings Responding to Salt Stress. PLoS ONE, 2015, 10, e0124421.	1.1	17
58	Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta. Science of the Total Environment, 2017, 574, 716-723.	3.9	16
59	Paddy periphyton: Potential roles for salt and nutrient management in degraded mudflats from coastal reclamation. Land Degradation and Development, 2018, 29, 2932-2941.	1.8	16
60	Comparative Ecophysiological Study of Salt Stress for Wild and Cultivated Soybean Species from the Yellow River Delta, China. Scientific World Journal, The, 2014, 2014, 1-13.	0.8	15
61	The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Science of the Total Environment, 2017, 578, 74-80.	3.9	15
62	Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	14
63	Reference Gene Selection for qPCR Normalization ofKosteletzkya virginicaunder Salt Stress. BioMed Research International, 2015, 2015, 1-8.	0.9	14
64	Genetically engineering <scp><i>Crambe abyssinica</i></scp> —A potentially highâ€value oil crop for salt land improvement. Land Degradation and Development, 2018, 29, 1096-1106.	1.8	14
65	A Quantitative Study of Gully Erosion Based on Object-Oriented Analysis Techniques: A Case Study in Beiyanzikou Catchment of Qixia, Shandong, China. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	13
66	Phosphorus Bioavailability and Release Potential Risk of the Sediments in the Coastal Wetland: A Case Study of Rongcheng Swan Lake, Shandong, China. Clean - Soil, Air, Water, 2014, 42, 963-972.	0.7	13
67	<i>KvLEA</i> , a New Isolated Late Embryogenesis Abundant Protein Gene from <i>Kosteletzkya virginica</i> Responding to Multiabiotic Stresses. BioMed Research International, 2016, 2016, 1-10.	0.9	13
68	Forms and vertical distributions of soil phosphorus in newly formed coastal wetlands in the <scp>Yellow River Delta</scp> estuary. Land Degradation and Development, 2018, 29, 4219-4226.	1.8	13
69	Magnetic Susceptibility and Heavy Metals Distribution from Riskâ€cultivated Soil around the Iron–Steel Plant, China. Clean - Soil, Air, Water, 2012, 40, 615-618.	0.7	12
70	Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. Ecotoxicology and Environmental Safety, 2021, 224, 112646.	2.9	12
71	Eastern China coastal mudflats: Saltâ€soil amendment with sewage sludge. Land Degradation and Development, 2018, 29, 3803-3811.	1.8	11
72	Effects of Age and Stand Density of Mother Trees on Early <i>Pinus thunbergii</i> Seedling Establishment in the Coastal Zone, China. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	10

#	Article	IF	CITATIONS
73	Soil-water interacting use patterns driven byZiziphus jujubaon the Chenier Island in the Yellow River Delta, China. Archives of Agronomy and Soil Science, 2016, 62, 1614-1624.	1.3	10
74	Molecular Cloning and Bioinformatics Analysis of a New Plasma Membrane Na ^{+} /H ^{+} Antiporter Gene from the Halophyte <i>Kosteletzkya virginica</i> . Scientific World Journal, The, 2014, 2014, 1-7.	0.8	9
75	Functional Trait Trade-Offs for the Tropical Montane Rain Forest Species Responding to Light from Simulating Experiments. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	9
76	Calculation of albedo on complex terrain using MODIS data: a case study in Taihang Mountain of China. Environmental Earth Sciences, 2015, 74, 6315-6324.	1.3	9
77	Integration into plant biology and soil science has provided insights into the total environment. Science of the Total Environment, 2017, 579, 928-929.	3.9	9
78	Analysis of saline groundwater infiltration into two loam soils. Land Degradation and Development, 2018, 29, 3795-3802.	1.8	9
79	Oil crop genetic modification for producing added value lipids. Critical Reviews in Biotechnology, 2020, 40, 777-786.	5.1	9
80	Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	8
81	Antioxidative Activities and Active Compounds of Extracts from <i>Catalpa</i> Plant Leaves. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	8
82	Physiological Responses of <i>Kosteletzkya virginica</i> to Coastal Wetland Soil. Scientific World Journal, The, 2015, 2015, 1-9.	0.8	8
83	Distribution of cadmium, copper, lead, and zinc in mudflat saltâ€soils amended with sewage sludge. Land Degradation and Development, 2018, 29, 1120-1129.	1.8	8
84	Evaporation Process in Soil Surface Containing Calcic Nodules on the Northern Loess Plateau of China by Simulated Experiments. Clean - Soil, Air, Water, 2009, 37, 866-871.	0.7	7
85	Dynamics in soil quality and crop physiology under poplar-agriculture tillage models in coastal areas of Jiangsu, China. Soil and Tillage Research, 2020, 204, 104733.	2.6	7
86	Applications of Plant Protein in the Dairy Industry. Foods, 2022, 11, 1067.	1.9	7
87	Fractions and Bioavailability of Soil Inorganic Phosphorus in the Loess Plateau of China under Different Vegetations. Acta Geologica Sinica, 2011, 85, 263-270.	0.8	6
88	Variation of Antioxidant System in <i>Pinus armandii</i> under Elevated O ₃ in an Entire Growth Season. Clean - Soil, Air, Water, 2013, 41, 5-10.	0.7	6
89	Interactive Effects of Moss-Dominated Crusts and <i>Artemisia ordosica</i> on Wind Erosion and Soil Moisture in Mu Us Sandland, China. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	6
90	Molecular cloning and functional analyses of the salt―responsive gene <i>KVHSP70</i> from <scp><i>Kosteletzkya virginica</i></scp> . Land Degradation and Development, 2020, 31, 773-782.	1.8	6

#	Article	IF	CITATIONS
91	Improving soil fertility by driving microbial community changes in saline soils of Yellow River Delta under petroleum pollution. Journal of Environmental Management, 2022, 304, 114265.	3.8	6
92	An Integrated Use of Topography with RSI in Gully Mapping, Shandong Peninsula, China. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	5
93	Nurseryâ€Box Total Fertilization Technology (NBTF) Application for Increasing Nitrogen Use Efficiency in Chinese Irrigated Riceland: N–Soil Interactions. Land Degradation and Development, 2016, 27, 1255-1265.	1.8	5
94	The Annual Characteristics of Rainwater HCHO in Guiyang City, Southwest of China. Clean - Soil, Air, Water, 2010, 38, 726-731.	0.7	3
95	<i>Eucalyptus</i> Trees – <i>Ageratina adenophora</i> Complex System: A New Ecoâ€environmental Protection Model. Clean - Soil, Air, Water, 2014, 42, 682-689.	0.7	3
96	Winter Wheat Water Productivity Evaluated by the Developed Remote Sensing Evapotranspiration Model in Hebei Plain, China. Scientific World Journal, The, 2015, 2015, 1-10.	0.8	3
97	Novel resistance mechanism of barley chlorina f104 antenna mutant against photoinhibition: possible role of new identified chloroplastic cpNrp protein. Theoretical and Experimental Plant Physiology, 2015, 27, 75-85.	1.1	3
98	Periphytonâ€induced changes in the phosphorus sorption characteristics of a paddy soil from coastal mudflat reclamation. Land Degradation and Development, 2018, 29, 4209-4218.	1.8	3
99	Differential Effects of Lichens versus Liverworts Epiphylls on Host Leaf Traits in the Tropical Montane Rainforest, Hainan Island, China. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	2
100	Ecological Footprint Analysis Applied to a Coalâ€ <scp>C</scp> onsumption County in China. Clean - Soil, Air, Water, 2014, 42, 1004-1013.	0.7	2
101	Environment-Living Organism's Interactions from Physiology to Genomics. International Journal of Genomics, 2015, 2015, 1-2.	0.8	2
102	Determining the influencing factors of preferential flow in ground fissures for coal mine dump eco-engineering. PeerJ, 2021, 9, e10547.	0.9	2
103	Characterization of Interactions between the Soybean Salt-Stress Responsive Membrane-Intrinsic Proteins GmPIP1 and GmPIP2. Agronomy, 2021, 11, 1312.	1.3	2
104	Tissue Fractions of Cadmium in Two Hyperaccumulating Jerusalem Artichoke Genotypes. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	1
105	Does Aqueousâ€Phase Oxidation of HCHO Opens a Pathway to Formic Acids in Atmosphere?. Clean - Soil, Air, Water, 2010, 38, 1006-1009.	0.7	0