Giorgio Trinchieri

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/427286/giorgio-trinchieri-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

298 papers

56,144 citations

116 h-index

236 g-index

317 ext. papers

61,516 ext. citations

13.8 avg, IF

7.88 L-index

#	Paper	IF	Citations
298	Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1 <i>Nature Medicine</i> , 2022 ,	50.5	19
297	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response <i>Science</i> , 2021 , 374, 1632-1640	33.3	52
296	Gut bacteria enable prostate cancer growth. <i>Science</i> , 2021 , 374, 154-155	33.3	1
295	Tristetraprolin expression by keratinocytes protects against skin carcinogenesis. <i>JCI Insight</i> , 2021 , 6,	9.9	2
294	Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament. <i>Brain, Behavior, and Immunity,</i> 2021 , 91, 472-486	16.6	14
293	Gut Microbiome Directs Hepatocytes to Recruit MDSCs and Promote Cholangiocarcinoma. <i>Cancer Discovery</i> , 2021 , 11, 1248-1267	24.4	29
292	Distinct contributions of cathelin-related antimicrobial peptide (CRAMP) derived from epithelial cells and macrophages to colon mucosal homeostasis. <i>Journal of Pathology</i> , 2021 , 253, 339-350	9.4	1
291	Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. <i>Nature Communications</i> , 2021 , 12, 101	17.4	16
290	Infection trains the host for microbiota-enhanced resistance to pathogens. <i>Cell</i> , 2021 , 184, 615-627.e17	56.2	43
289	Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. <i>Science</i> , 2021 , 371, 595-602	33.3	211
288	Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nature Metabolism, 2021, 3, 1042-1057	14.6	7
287	Microbial DNA signature in plasma enables cancer diagnosis. <i>Nature Reviews Clinical Oncology</i> , 2020 , 17, 453-454	19.4	2
286	TNF-shaped microbiota promotes cancer <i>Nature Cancer</i> , 2020 , 1, 667-669	15.4	3
285	Requirements for the differentiation of innate T-bet memory-phenotype CD4 T lymphocytes under steady state. <i>Nature Communications</i> , 2020 , 11, 3366	17.4	5
284	Microbiome as an Immunological Modifier. <i>Methods in Molecular Biology</i> , 2020 , 2055, 595-638	1.4	8
283	Attenuation of immune-mediated bone marrow damage in conventionally housed mice. <i>Molecular Carcinogenesis</i> , 2020 , 59, 237-245	5	4
282	Can we harness the microbiota to enhance the efficacy of cancer immunotherapy?. <i>Nature Reviews Immunology</i> , 2020 , 20, 522-528	36.5	26

(2018-2020)

281	FAM3D is essential for colon homeostasis and host defense against inflammation associated carcinogenesis. <i>Nature Communications</i> , 2020 , 11, 5912	17.4	6
280	The Great Debate at @mmunotherapy BridgeQNaples, December 5, 2019 2020 , 8,		1
279	Human NK cells prime inflammatory DC precursors to induce Tc17 differentiation. <i>Blood Advances</i> , 2020 , 4, 3990-4006	7.8	4
278	Conventional Co-Housing Modulates Murine Gut Microbiota and Hematopoietic Gene Expression. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
277	Perspectives in melanoma: meeting report from the "Melanoma Bridge" (December 5th-7th, 2019, Naples, Italy). <i>Journal of Translational Medicine</i> , 2020 , 18, 346	8.5	2
276	MHC Class II Antigen Presentation by the Intestinal Epithelium Initiates Graft-versus-Host Disease and Is Influenced by the Microbiota. <i>Immunity</i> , 2019 , 51, 885-898.e7	32.3	84
275	Correlation between Disease Severity and the Intestinal Microbiome in Mycobacterium tuberculosis-Infected Rhesus Macaques. <i>MBio</i> , 2019 , 10,	7.8	14
274	The cancer microbiome. <i>Nature Reviews Cancer</i> , 2019 , 19, 371-376	31.3	88
273	T-Cell Deletion of MyD88 Connects IL17 and I B Ito RAS Oncogenesis. <i>Molecular Cancer Research</i> , 2019 , 17, 1759-1773	6.6	2
272	Laboratory mice born to wild mice have natural microbiota and model human immune responses. <i>Science</i> , 2019 , 365,	33.3	189
271	Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa. <i>Journal of Cachexia, Sarcopenia and Muscle</i> , 2019 , 10, 1116-1127	10.3	17
270	Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response. <i>Journal of Clinical Investigation</i> , 2019 , 129, 1314-1328	15.9	23
269	Cell-Type-Specific Responses to Interleukin-1 Control Microbial Invasion and Tumor-Elicited Inflammation in Colorectal Cancer. <i>Immunity</i> , 2019 , 50, 166-180.e7	32.3	66
268	Natural Killer Cells Detect a Tumor-Produced Growth Factor: A Vestige of Antiviral Resistance?. <i>Trends in Immunology</i> , 2018 , 39, 357-358	14.4	3
267	The Antimicrobial Peptide CRAMP Is Essential for Colon Homeostasis by Maintaining Microbiota Balance. <i>Journal of Immunology</i> , 2018 , 200, 2174-2185	5.3	34
266	Anti-PD1 in the wonder-gut-land. <i>Cell Research</i> , 2018 , 28, 263-264	24.7	16
265	Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. <i>Cell</i> , 2018 , 172, 784-796.e18	56.2	203
264	The interplay between neutrophils and microbiota in cancer. <i>Journal of Leukocyte Biology</i> , 2018 , 104, 701-715	6.5	6

263	Interaction between the microbiome and TP53 in human lung cancer. <i>Genome Biology</i> , 2018 , 19, 123	18.3	118
262	The innate immune receptor TREM-1 promotes liver injury and fibrosis. <i>Journal of Clinical Investigation</i> , 2018 , 128, 4870-4883	15.9	41
261	MAVS deficiency induces gut dysbiotic microbiota conferring a proallergic phenotype. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2018 , 115, 10404-10409	11.5	10
260	Cutting Edge: Quantitative Determination of CD40L Threshold for IL-12 and IL-23 Production from Dendritic Cells. <i>Journal of Immunology</i> , 2018 , 201, 2879-2884	5.3	7
259	A dysbiotic microbiome triggers T17 cells to mediate oral mucosal immunopathology in mice and humans. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	166
258	An Interleukin-23-Interleukin-22 Axis Regulates Intestinal Microbial Homeostasis to Protect from Diet-Induced Atherosclerosis. <i>Immunity</i> , 2018 , 49, 943-957.e9	32.3	82
257	Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. <i>Science</i> , 2018 , 360,	33.3	503
256	Influence of gut microbiome on mucosal immune activation and SHIV viral transmission in naive macaques. <i>Mucosal Immunology</i> , 2018 , 11, 1219-1229	9.2	24
255	Microbes and Cancer. Annual Review of Immunology, 2017, 35, 199-228	34.7	127
254	On-going Mechanical Damage from Mastication Drives Homeostatic Th17 Cell Responses at the Oral Barrier. <i>Immunity</i> , 2017 , 46, 133-147	32.3	126
253	Workshop Report: Modulation of Antitumor Immune Responses by Dietary and Microbial Metabolites. <i>Journal of the National Cancer Institute</i> , 2017 , 109,	9.7	3
252	Systematic evaluation of immune regulation and modulation 2017 , 5, 21		15
251	Microbiota: a key orchestrator of cancer therapy. <i>Nature Reviews Cancer</i> , 2017 , 17, 271-285	31.3	455
250	Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. <i>Cell</i> , 2017 , 171, 1015-1028.e13	56.2	365
249	Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. <i>Microbiome</i> , 2017 , 5, 71	16.6	76
248	The role of microbiota in cancer therapy. Current Opinion in Immunology, 2016, 39, 75-81	7.8	56
247	Cancer Immunity: Lessons From Infectious Diseases. <i>Journal of Infectious Diseases</i> , 2015 , 212 Suppl 1, S67-73	7	24
246	Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely upon Education from Tumor-Associated B Cells. <i>Cancer Research</i> , 2015 , 75, 3456-65	10.1	85

245	Proteus mirabilis: The Enemy Within. <i>Immunity</i> , 2015 , 42, 602-4	32.3	10
244	NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay. <i>Cancer Research</i> , 2015 , 75, 2788-99	10.1	37
243	Microbiota-Dependent Sequelae of Acute Infection Compromise Tissue-Specific Immunity. <i>Cell</i> , 2015 , 163, 354-66	56.2	175
242	The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. <i>European Journal of Immunology</i> , 2015 , 45, 17-31	6.1	143
241	Systemic Inflammation in Cachexia - Is Tumor Cytokine Expression Profile the Culprit?. <i>Frontiers in Immunology</i> , 2015 , 6, 629	8.4	48
240	Bone-Marrow-Resident NK Cells Prime Monocytes for Regulatory Function during Infection. <i>Immunity</i> , 2015 , 42, 1130-42	32.3	149
239	Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment. <i>Nucleic Acids Research</i> , 2015 , 43, e82	20.1	47
238	Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunology Research, 2015, 3, 103-9	12.5	28
237	Global analyses of human immune variation reveal baseline predictors of postvaccination responses. <i>Cell</i> , 2014 , 157, 499-513	56.2	278
236	Differential responses of plasmacytoid dendritic cells to influenza virus and distinct viral pathogens. <i>Journal of Virology</i> , 2014 , 88, 10758-66	6.6	22
235	Host immune response to infection and cancer: unexpected commonalities. <i>Cell Host and Microbe</i> , 2014 , 15, 295-305	23.4	99
234	Interleukin-1 and interferon-Drchestrate Eglucan-activated human dendritic cell programming via IB-Imodulation. <i>PLoS ONE</i> , 2014 , 9, e114516	3.7	13
233	Why should we need the gut microbiota to respond to cancer therapies?. <i>OncoImmunology</i> , 2014 , 3, e27	′ 5 724	14
232	Critical role for CXIIR1+ mononuclear phagocytes in intestinal homeostasis. <i>Journal of Experimental Medicine</i> , 2014 , 211, 1500-1	16.6	2
231	Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells. <i>Journal of Immunology</i> , 2014 , 192, 4409-16	5.3	35
230	MyD88 and its divergent toll in carcinogenesis. <i>Trends in Immunology</i> , 2013 , 34, 379-89	14.4	64
229	Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. <i>Science</i> , 2013 , 342, 967-70	33.3	1178
228	Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. <i>Cell Host and Microbe</i> , 2013 , 14, 318-28	23.4	102

227	Molecular pathways: toll-like receptors in the tumor microenvironmentpoor prognosis or new therapeutic opportunity. <i>Clinical Cancer Research</i> , 2013 , 19, 1340-6	12.9	104
226	The pivotal role of IKK#n the development of spontaneous lung squamous cell carcinomas. <i>Cancer Cell</i> , 2013 , 23, 527-40	24.3	85
225	The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. <i>Journal of Experimental Medicine</i> , 2013 , 210, 1369-87	16.6	100
224	LAB/NTAL facilitates fungal/PAMP-induced IL-12 and IFN-[production by repressing Ecatenin activation in dendritic cells. <i>PLoS Pathogens</i> , 2013 , 9, e1003357	7.6	13
223	TGF-Bignaling in myeloid cells is required for tumor metastasis. Cancer Discovery, 2013, 3, 936-51	24.4	97
222	Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. <i>Journal of Immunology</i> , 2013 , 190, 5722-30	5.3	91
221	Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. <i>Journal of Clinical Investigation</i> , 2013 , 123, 4859-74	15.9	113
220	The price of immunity. <i>Nature Immunology</i> , 2012 , 13, 932-8	19.1	110
219	IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. <i>Journal of Experimental Medicine</i> , 2012 , 209, 1689-702	16.6	80
218	NK cell-derived interferon-Drchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. <i>Immunity</i> , 2012 , 36, 1047-59	32.3	200
217	Lymphocyte choriomeningitis virus plays hide-and-seek with type 1 interferon. <i>Cell Host and Microbe</i> , 2012 , 11, 553-5	23.4	2
216	Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. <i>Nature</i> , 2012 , 491, 254-8	50.4	873
215	The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. <i>Cancer Research</i> , 2012 , 72, 3977-86	10.1	157
214	Cancer classification using the Immunoscore: a worldwide task force. <i>Journal of Translational Medicine</i> , 2012 , 10, 205	8.5	538
213	Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. <i>Molecular Therapy</i> , 2012 , 20, 1242-50	11.7	92
212	Compartmentalized control of skin immunity by resident commensals. <i>Science</i> , 2012 , 337, 1115-9	33.3	695
211	Cancer and inflammation: an old intuition with rapidly evolving new concepts. <i>Annual Review of Immunology</i> , 2012 , 30, 677-706	34.7	361
210	CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. <i>Blood</i> , 2011 , 118, 5130-40	2.2	39

(2010-2011)

209	Innate immune mechanisms of colitis and colitis-associated colorectal cancer. <i>Nature Reviews Immunology</i> , 2011 , 11, 9-20	36.5	287
208	Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system?. <i>Nature Reviews Immunology</i> , 2011 , 11, 558-65	36.5	96
207	Highlights of 10 years of immunology in Nature Reviews Immunology. <i>Nature Reviews Immunology</i> , 2011 , 11, 693-702	36.5	75
206	Interferon-links ultraviolet radiation to melanomagenesis in mice. <i>Nature</i> , 2011 , 469, 548-53	50.4	209
205	At 17, in-10@ passion need not inflame. <i>Immunity</i> , 2011 , 34, 460-2	32.3	4
204	Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. <i>Clinical Cancer Research</i> , 2011 , 17, 3064-76	12.9	87
203	Interleukin-2 inhibits FMS-like tyrosine kinase 3 receptor ligand (flt3L)-dependent development and function of conventional and plasmacytoid dendritic cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 2408-13	11.5	24
202	Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1[production in human macrophages. <i>Journal of Immunology</i> , 2011 , 187, 2540-7	5.3	178
201	IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. <i>Journal of Clinical Investigation</i> , 2011 , 121, 4746-57	15.9	238
200	Innate inflammation and cancer: Is it time for cancer prevention?. F1000 Medicine Reports, 2011, 3, 11		21
200 199	Innate inflammation and cancer: Is it time for cancer prevention?. <i>F1000 Medicine Reports</i> , 2011 , 3, 11 Turning on and off the Immunological Switch: Immune Response Polarization and Its Control by IL-10 and STAT3 2011 , 27-55		21
	Turning on and off the Immunological Switch: Immune Response Polarization and Its Control by	6.5	21
199	Turning on and off the Immunological Switch: Immune Response Polarization and Its Control by IL-10 and STAT3 2011 , 27-55 National Institutes of Health Center for Human Immunology Conference, September 2009. <i>Annals</i>	6.5	
199 198	Turning on and off the Immunological Switch: Immune Response Polarization and Its Control by IL-10 and STAT3 2011 , 27-55 National Institutes of Health Center for Human Immunology Conference, September 2009. <i>Annals of the New York Academy of Sciences</i> , 2010 , 1200 Suppl 1, E1-23 TLR3 and Rig-like receptor on myeloid dendritic cells and Rig-like receptor on human NK cells are both mandatory for production of IFN-gamma in response to double-stranded RNA. <i>Journal of</i>		9
199 198 197	Turning on and off the Immunological Switch: Immune Response Polarization and Its Control by IL-10 and STAT3 2011 , 27-55 National Institutes of Health Center for Human Immunology Conference, September 2009. <i>Annals of the New York Academy of Sciences</i> , 2010 , 1200 Suppl 1, E1-23 TLR3 and Rig-like receptor on myeloid dendritic cells and Rig-like receptor on human NK cells are both mandatory for production of IFN-gamma in response to double-stranded RNA. <i>Journal of Immunology</i> , 2010 , 185, 2080-8 Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that	5.3	9 75
199 198 197 196	Turning on and off the Immunological Switch: Immune Response Polarization and Its Control by IL-10 and STAT3 2011 , 27-55 National Institutes of Health Center for Human Immunology Conference, September 2009. <i>Annals of the New York Academy of Sciences</i> , 2010 , 1200 Suppl 1, E1-23 TLR3 and Rig-like receptor on myeloid dendritic cells and Rig-like receptor on human NK cells are both mandatory for production of IFN-gamma in response to double-stranded RNA. <i>Journal of Immunology</i> , 2010 , 185, 2080-8 Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. <i>Cancer Research</i> , 2010 , 70, 7764-75	5-3	9 75 27
199 198 197 196	Turning on and off the Immunological Switch: Immune Response Polarization and Its Control by IL-10 and STAT3 2011, 27-55 National Institutes of Health Center for Human Immunology Conference, September 2009. <i>Annals of the New York Academy of Sciences</i> , 2010, 1200 Suppl 1, E1-23 TLR3 and Rig-like receptor on myeloid dendritic cells and Rig-like receptor on human NK cells are both mandatory for production of IFN-gamma in response to double-stranded RNA. <i>Journal of Immunology</i> , 2010, 185, 2080-8 Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. <i>Cancer Research</i> , 2010, 70, 7764-75 Cancer and inflammation: promise for biologic therapy. <i>Journal of Immunotherapy</i> , 2010, 33, 335-51 MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of	5-3	9 75 27 254

191	Immunologic and therapeutic synergy of IL-27 and IL-2: enhancement of T cell sensitization, tumor-specific CTL reactivity and complete regression of disseminated neuroblastoma metastases in the liver and bone marrow. <i>Journal of Immunology</i> , 2009 , 182, 4328-38	5.3	75
190	Reinforcing suppression using regulators: a new link between STAT3, IL-23, and Tregs in tumor immunosuppression. <i>Cancer Cell</i> , 2009 , 15, 81-3	24.3	17
189	Double stranded RNA tricks melanoma cells into committing suicide. <i>Pigment Cell and Melanoma Research</i> , 2009 , 22, 705-6	4.5	1
188	Plasmacytoid dendritic cells mediate oral tolerance. <i>Immunity</i> , 2008 , 29, 464-75	32.3	312
187	Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. Journal of Experimental Medicine, 2008, 205, 1447-61	16.6	219
186	Regulation of interleukin-12/interleukin-23 production and the T-helper 17 response in humans. <i>Immunological Reviews</i> , 2008 , 226, 112-31	11.3	163
185	Cooperation of Toll-like receptor signals in innate immune defence. <i>Nature Reviews Immunology</i> , 2007 , 7, 179-90	36.5	1047
184	Pillars of immunology: The birth of a cell type. <i>Journal of Immunology</i> , 2007 , 178, 3-4	5.3	4
183	TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-gamma production. <i>Journal of Experimental Medicine</i> , 2007 , 204, 2591-602	16.6	59
182	Cell proliferation and survival induced by Toll-like receptors is antagonized by type I IFNs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 8047-52	11.5	62
181	Interleukin-10 production by effector T cells: Th1 cells show self control. <i>Journal of Experimental Medicine</i> , 2007 , 204, 239-43	16.6	257
180	Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals. <i>Journal of Immunology</i> , 2006 , 177, 7551-8	5.3	233
179	Ligation of the FcR gamma chain-associated human osteoclast-associated receptor enhances the proinflammatory responses of human monocytes and neutrophils. <i>Journal of Immunology</i> , 2006 , 176, 3149-56	5.3	40
178	Ikaros is required for plasmacytoid dendritic cell differentiation. <i>Blood</i> , 2006 , 108, 4025-34	2.2	104
177	Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. <i>Nature Immunology</i> , 2006 , 7, 652-62	19.1	539
176	A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. <i>Journal of Experimental Medicine</i> , 2005 , 201, 1435-46	16.6	433
175	Fc receptor gamma-chain activation via hOSCAR induces survival and maturation of dendritic cells and modulates Toll-like receptor responses. <i>Blood</i> , 2005 , 105, 3623-32	2.2	33
174	Cytokine receptor gene plays antioncogene. <i>Blood</i> , 2005 , 106, 3684-3685	2.2	

(2004-2005)

173	Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. <i>Journal of Neurochemistry</i> , 2005 , 95, 331-40	6	102
172	Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. <i>Nature Immunology</i> , 2005 , 6, 1011-9	19.1	231
171	MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. <i>Journal of Immunology</i> , 2005 , 175, 6723-32	5.3	174
170	Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. <i>International Immunology</i> , 2005 , 17, 1429-38	4.9	67
169	Type I interferon dependence of plasmacytoid dendritic cell activation and migration. <i>Journal of Experimental Medicine</i> , 2005 , 201, 1157-67	16.6	269
168	Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. <i>Cancer Research</i> , 2005 , 65, 3437-46	10.1	435
167	Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. <i>Journal of Biological Chemistry</i> , 2005 , 280, 38133-45	5 ^{5.4}	192
166	CD85j (leukocyte Ig-like receptor-1/Ig-like transcript 2) inhibits human osteoclast-associated receptor-mediated activation of human dendritic cells. <i>Journal of Immunology</i> , 2005 , 174, 6757-63	5.3	41
165	The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. <i>Journal of Immunology</i> , 2005 , 174, 727-34	5.3	324
164	Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. <i>Journal of Immunology</i> , 2005 , 174, 2942-50	5.3	309
163	Distinct and overlapping roles of interleukin-10 and CD25+ regulatory T cells in the inhibition of antitumor CD8 T-cell responses. <i>Cancer Research</i> , 2005 , 65, 8479-86	10.1	62
162	Toll-like receptor signaling stimulates cell cycle entry and progression in fibroblasts. <i>Journal of Biological Chemistry</i> , 2005 , 280, 20620-7	5.4	64
161	Production of type I interferons: plasmacytoid dendritic cells and beyond. <i>Journal of Experimental Medicine</i> , 2005 , 202, 461-5	16.6	230
160	Virus overrides the propensity of human CD40L-activated plasmacytoid dendritic cells to produce Th2 mediators through synergistic induction of IFN-{gamma} and Th1 chemokine production. <i>Journal of Leukocyte Biology</i> , 2005 , 78, 954-66	6.5	24
159	Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. <i>Journal of Immunology</i> , 2004 , 173, 3748-54	5.3	183
158	Interleukin-10 in viral diseases and cancer: exiting the labyrinth?. Immunological Reviews, 2004 , 202, 223	3 -36 3	90
157	Cytokines and cytokine receptors. <i>Immunological Reviews</i> , 2004 , 202, 5-7	11.3	12
156	Plasmacytoid dendritic cells in immunity. <i>Nature Immunology</i> , 2004 , 5, 1219-26	19.1	1315

155	OSCAR is an FcRgamma-associated receptor that is expressed by myeloid cells and is involved in antigen presentation and activation of human dendritic cells. <i>Blood</i> , 2004 , 104, 1386-95	2.2	80
154	Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. <i>Journal of Immunology</i> , 2003 , 171, 6466-77	5.3	311
153	Interleukin-12 and the regulation of innate resistance and adaptive immunity. <i>Nature Reviews Immunology</i> , 2003 , 3, 133-46	36.5	2857
152	The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. <i>Immunity</i> , 2003 , 19, 641-4	32.3	769
151	The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. <i>Journal of Experimental Medicine</i> , 2003 , 198, 823-30	16.6	199
150	Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. Journal of Experimental Medicine, 2003, 197, 101-9	16.6	476
149	Tumour escape from immune surveillance through dendritic cell inactivation. <i>Seminars in Cancer Biology</i> , 2002 , 12, 33-42	12.7	190
148	Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. <i>Journal of Immunology</i> , 2002 , 168, 4796-801	5.3	290
147	Reciprocal activating interaction between natural killer cells and dendritic cells. <i>Journal of Experimental Medicine</i> , 2002 , 195, 327-33	16.6	858
146	Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. <i>Journal of Experimental Medicine</i> , 2002 , 195, 517-28	16.6	385
145	Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. <i>Journal of Experimental Medicine</i> , 2002 , 196, 541-9	16.6	296
144	Effect of the V3 loop deletion of envelope glycoprotein on cellular responses and protection against challenge with recombinant vaccinia virus expressing gp160 of primary human immunodeficiency virus type 1 isolates. <i>Journal of Virology</i> , 2002 , 76, 4222-32	6.6	18
143	The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. <i>Journal of Experimental Medicine</i> , 2002 , 195, 953-8	16.6	446
142	Interleukin-12 in anti-tumor immunity and immunotherapy. <i>Cytokine and Growth Factor Reviews</i> , 2002 , 13, 155-68	17.9	546
141	Introduction: Cytokines and Cancer. Cytokine and Growth Factor Reviews, 2002, 13, 93-94	17.9	4
140	Origin and filiation of human plasmacytoid dendritic cells. <i>Human Immunology</i> , 2002 , 63, 1081-93	2.3	42
139	Type I interferons and IL-12: convergence and cross-regulation among mediators of cellular immunity. <i>European Journal of Immunology</i> , 2001 , 31, 2026-2034	6.1	71
138	Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. <i>Nature Immunology</i> , 2001 , 2, 1144-50	19.1	861

137	Chlamydia pneumoniae exacerbates aortic inflammatory foci caused by murine cytomegalovirus infection in normocholesterolemic mice. <i>Vaccine Journal</i> , 2001 , 8, 1263-6		11
136	Regulatory role of T cells producing both interferon gamma and interleukin 10 in persistent infection. <i>Journal of Experimental Medicine</i> , 2001 , 194, F53-7	16.6	134
135	IL-12 suppression during experimental endotoxin tolerance: dendritic cell loss and macrophage hyporesponsiveness. <i>Journal of Immunology</i> , 2001 , 166, 7504-13	5.3	123
134	Suppression of Il-12 transcription in macrophages following Fc gamma receptor ligation. <i>Journal of Immunology</i> , 2001 , 166, 4498-506	5.3	83
133	Regulation of interleukin-12 production in antigen-presenting cells. <i>Advances in Immunology</i> , 2001 , 79, 55-92	5.6	153
132	Modulation of susceptibility and resistance to an autoimmune model of multiple sclerosis in prototypically susceptible and resistant strains by neutralization of interleukin-12 and interleukin-4, respectively. <i>Clinical Immunology</i> , 2001 , 98, 23-30	9	40
131	Human thymus contains IFN-alpha-producing CD11c(-), myeloid CD11c(+), and mature interdigitating dendritic cells. <i>Journal of Clinical Investigation</i> , 2001 , 107, 835-44	15.9	148
130	Type I interferons and IL-12: convergence and cross-regulation among mediators of cellular immunity 2001 , 31, 2026		1
129	Cutting edge: ectopic expression of the IL-12 receptor-beta 2 in developing and committed Th2 cells does not affect the production of IL-4 or induce the production of IFN-gamma. <i>Journal of Immunology</i> , 2000 , 164, 2861-5	5.3	43
128	The suppressive effect of TGF-beta on IL-12-mediated immune modulation specific to a peptide Ac1-11 of myelin basic protein (MBP): a mechanism involved in inhibition of both IL-12 receptor beta1 and beta2. <i>Journal of Neuroimmunology</i> , 2000 , 108, 53-63	3.5	17
127	Leishmania sp: comparative study with Toxoplasma gondii and Trypanosoma cruzi in their ability to initialize IL-12 and IFN-gamma synthesis. <i>Experimental Parasitology</i> , 2000 , 95, 96-105	2.1	34
126	Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. <i>Journal of Biological Chemistry</i> , 2000 , 275, 32681-7	5.4	274
125	Inhibition of IL-12 production in human monocyte-derived macrophages by TNF. <i>Journal of Immunology</i> , 2000 , 164, 1722-9	5.3	93
124	Biosynthesis and posttranslational regulation of human IL-12. Journal of Immunology, 2000 , 164, 4752-6	5 .3	86
123	Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. <i>Journal of Immunology</i> , 2000 , 164, 5522-9	5.3	116
122	Roles of interleukin-12 and gamma interferon in murine Chlamydia pneumoniae infection. <i>Infection and Immunity</i> , 2000 , 68, 2245-53	3.7	52
121	An IFN-gamma-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. <i>Journal of Immunology</i> , 2000 , 165, 271-9	5.3	162
120	Expression and function of IL-12 and IL-18 receptors on human tonsillar B cells. <i>Journal of Immunology</i> , 2000 , 165, 6880-8	5.3	83

119	Association between HIV-specific T helper responses and CTL activities in pediatric AIDS 2000 , 30, 117		3
118	Downregulation of Interleukin-12 (IL-12) Responsiveness in Human T Cells by Transforming Growth Factor-ERelationship With IL-12 Signaling. <i>Blood</i> , 1999 , 93, 1448-1455	2.2	52
117	The Interleukin-12Mediated Pathway of Immune Events Is Dysfunctional in Human Immunodeficiency VirusInfected Individuals. <i>Blood</i> , 1999 , 94, 1003-1011	2.2	88
116	Retinoids synergize with interleukin-2 to augment IFN-gamma and interleukin-12 production by human peripheral blood mononuclear cells. <i>Journal of Interferon and Cytokine Research</i> , 1999 , 19, 407-1	15 ^{3.5}	38
115	Molecular cloning and biological characterization of NK cell activation-inducing ligand, a counterstructure for CD48. <i>European Journal of Immunology</i> , 1999 , 29, 3466-77	6.1	77
114	Regulation of human IL-18 mRNA expression. <i>Clinical Immunology</i> , 1999 , 90, 15-21	9	59
113	IL-12 reverses the suppressive effect of the CD40 ligand blockade on experimental autoimmune encephalomyelitis (EAE). <i>Journal of the Neurological Sciences</i> , 1999 , 171, 60-4	3.2	24
112	Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFkappaB. <i>Journal of Biological Chemistry</i> , 1999 , 274, 7674-80	5.4	182
111	CD4(+) T cell clones producing both interferon-gamma and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. <i>Clinical Immunology</i> , 1999 , 92, 224-	34	155
110	Downregulation of Interleukin-12 (IL-12) Responsiveness in Human T Cells by Transforming Growth Factor-🛮 Relationship With IL-12 Signaling. <i>Blood</i> , 1999 , 93, 1448-1455	2.2	7
109	Decreased production of interleukin-12 and other Th1-type cytokines in patients with recent-onset systemic lupus erythematosus. <i>Arthritis and Rheumatism</i> , 1998 , 41, 838-44		204
108	The role of IL-12 in the maintenance of an established Th1 immune response in experimental leishmaniasis. <i>European Journal of Immunology</i> , 1998 , 28, 2227-33	6.1	47
107	Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance. <i>European Journal of Immunology</i> , 1998 , 28, 3128-36	6.1	120
106	Immunobiology of interleukin-12. <i>Immunologic Research</i> , 1998 , 17, 269-78	4.3	170
105	Interleukin 12 breaks ultraviolet light induced immunosuppression by affecting CD8+ rather than CD4+ T cells. <i>Journal of Investigative Dermatology</i> , 1998 , 110, 272-6	4.3	25
104	Cultured human monocytes release proinflammatory cytokines in response to myelin basic protein. <i>Neuroscience Letters</i> , 1998 , 252, 151-4	3.3	6
103	Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. <i>Immunity</i> , 1998 , 9, 25-34	32.3	265
102	Interleukin-12: a cytokine at the interface of inflammation and immunity. <i>Advances in Immunology</i> , 1998 , 70, 83-243	5.6	595

101	Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. <i>Journal of Experimental Medicine</i> , 1998 , 188, 1603-10	16.6	111
100	Proinflammatory and immunoregulatory functions of interleukin-12. <i>International Reviews of Immunology</i> , 1998 , 16, 365-96	4.6	249
99	Synergistic regulation of the human interleukin-12 p40 promoter by NFkappaB and Ets transcription factors in Epstein-Barr virus-transformed B cells and macrophages. <i>Journal of Biological Chemistry</i> , 1998 , 273, 6431-8	5.4	86
98	Differential regulation of the interleukin-12 receptor during the innate immune response to Leishmania major. <i>Infection and Immunity</i> , 1998 , 66, 3818-24	3.7	53
97	Role of interleukin-12 in primary influenza virus infection. <i>Journal of Virology</i> , 1998 , 72, 4825-31	6.6	131
96	Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. <i>Journal of Clinical Investigation</i> , 1998 , 101, 1441-52	15.9	316
95	Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance 1998 , 28, 3128		4
94	Identification and characterization of a novel Ets-2-related nuclear complex implicated in the activation of the human interleukin-12 p40 gene promoter. <i>Journal of Biological Chemistry</i> , 1997 , 272, 10389-95	5.4	121
93	Function and clinical use of interleukin-12. Current Opinion in Hematology, 1997, 4, 59-66	3.3	46
92	Immunomodulation by Quillaja saponaria adjuvant formulations: in vivo stimulation of interleukin 12 and its effects on the antibody response. <i>Cytokine</i> , 1997 , 9, 73-82	4	40
91	Interleukin-12: an immunoregulatory cytokine produced by B cells and antigen-presenting cells. <i>Methods</i> , 1997 , 11, 116-27	4.6	38
90	IL-12 as an adjuvant for cell-mediated immunity. <i>Seminars in Immunology</i> , 1997 , 9, 285-91	10.7	71
89	Establishment of an IL-12-responsive T cell clone: its characterization and utilization in the quantitation of IL-12 activity. <i>Journal of Leukocyte Biology</i> , 1997 , 61, 346-52	6.5	27
88	Regulation of T cell-dependent and -independent IL-12 production by the three Th2-type cytokines IL-10, IL-6, and IL-4. <i>Journal of Leukocyte Biology</i> , 1997 , 61, 80-7	6.5	72
87	Calcitonin gene-related peptide inhibits proliferation and antigen presentation by human peripheral blood mononuclear cells: effects on B7, interleukin 10, and interleukin 12. <i>Journal of Investigative Dermatology</i> , 1997 , 108, 43-8	4.3	91
86	Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-gamma). <i>Current Opinion in Immunology</i> , 1997 , 9, 17-23	7.8	281
85	Differential production of IL-12 in BALB/c and DBA/2 mice controls IL-4 versus IFN-gamma synthesis in primed CD4 lymphocytes. <i>International Immunology</i> , 1996 , 8, 1511-20	4.9	29
84	Regulation of interleukin-12 production. <i>Annals of the New York Academy of Sciences</i> , 1996 , 795, 13-25	6.5	31

83	A novel ets-2-related nuclear factor is involved in transcriptional activation of the human interleukin-12 p40 gene promoter in response to interferon-gamma and LPS stimulation of monocytic cells. <i>Annals of the New York Academy of Sciences</i> , 1996 , 795, 357-60	6.5	17
82	Does interleukin-12 play a role in the viral immune response?. <i>Annals of the New York Academy of Sciences</i> , 1996 , 795, 366-7	6.5	7
81	Leishmania major metacyclogenesis modulates ability to induce IL-12. <i>Annals of the New York Academy of Sciences</i> , 1996 , 795, 400-2	6.5	4
80	Structure of the mouse IL-12R beta 1 chain and regulation of its expression in BCG/LPS-treated mice. <i>Annals of the New York Academy of Sciences</i> , 1996 , 795, 413-5	6.5	11
79	Mechanism of the induction of anti-tumor immunity by B7.1 and interleukin-12. <i>Annals of the New York Academy of Sciences</i> , 1996 , 795, 429-33	6.5	4
78	Acute induction and priming for cytokine production in lymphocytes. <i>Cytokine and Growth Factor Reviews</i> , 1996 , 7, 123-32	17.9	28
77	Mechanism of suppression of cell-mediated immunity by measles virus. <i>Science</i> , 1996 , 273, 228-31	33.3	480
76	Immunoregulation by interleukin-12. <i>Journal of Leukocyte Biology</i> , 1996 , 59, 505-11	6.5	217
75	Enhancement of porcine natural killer cell activity by recombinant human and murine IL-12. <i>Cellular Immunology</i> , 1996 , 172, 29-34	4.4	13
74	Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. <i>European Journal of Immunology</i> , 1996 , 26, 659-68	6.1	553
73	Interleukin-12 prevents ultraviolet B-induced local immunosuppression and overcomes UVB-induced tolerance. <i>Journal of Investigative Dermatology</i> , 1996 , 106, 1187-91	4.3	107
72	The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. <i>Journal of Experimental Medicine</i> , 1996 , 183, 147-57	16.6	561
71	Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-gamma and interleukin-10. <i>Journal of Experimental Medicine</i> , 1996 , 183, 2559-69	16.6	272
70	Role of interleukin-12 in human Th1 response. <i>Chemical Immunology and Allergy</i> , 1996 , 63, 14-29		6
69	Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. <i>Nature Medicine</i> , 1995 , 1, 890-3	50.5	229
68	The role of natural killer cells in host-parasite interactions. Current Opinion in Immunology, 1995, 7, 34-4	10 7.8	168
67	Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production. <i>Journal of Experimental Medicine</i> , 1995 , 181, 537-46	16.6	313
66	Natural killer cells wear different hats: effector cells of innate resistance and regulatory cells of adaptive immunity and of hematopoiesis. <i>Seminars in Immunology</i> , 1995 , 7, 83-8	10.7	115

Cellular Biochemistry, 1993, 53, 301-8

Interleukin-12. BioDrugs, 1995, 3, 262-270 65 1 Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate 64 2030 34.7 resistance and antigen-specific adaptive immunity. Annual Review of Immunology, 1995, 13, 251-76 Interleukin-12 production by human polymorphonuclear leukocytes. European Journal of 63 6.1 241 Immunology, 1995, 25, 1-5 CD4 T cells inhibit in vivo the CD8-mediated immune response against murine colon carcinoma cells 62 6.1 113 transduced with interleukin-12 genes. European Journal of Immunology, 1995, 25, 137-46 Interleukin-12 is required for interferon-gamma production and lethality in 61 6.1 431 lipopolysaccharide-induced shock in mice. European Journal of Immunology, 1995, 25, 672-6 The two faces of interleukin 12: a pro-inflammatory cytokine and a key immunoregulatory molecule produced by antigen-presenting cells. Novartis Foundation Symposium, 1995, 195, 203-14; 60 9 discussion 214-20 Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 386 59 cell clones. Journal of Experimental Medicine, 1994, 179, 1273-83 B7 and interleukin 12 cooperate for proliferation and interferon gamma production by mouse T helper clones that are unresponsive to B7 costimulation. Journal of Experimental Medicine, 1994, 58 16.6 333 180, 223-31 Impaired interleukin 12 production in human immunodeficiency virus-infected patients. Journal of 16.6 391 57 Experimental Medicine, 1994, 179, 1361-6 Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine 56 16.6 310 production of human T cells. Journal of Experimental Medicine, 1994, 180, 211-22 The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science, 1994, 263, 235-7 55 655 33.3 Interleukin-12: a bridge between innate resistance and adaptive immunity with a role in infection 163 54 5.7 and acquired immunodeficiency. Journal of Clinical Immunology, 1994, 14, 149-61 Infection with Leishmania major induces interleukin-12 production in vivo. Immunology Letters, 53 4.1 75 **1994**, 40, 157-61 Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cellular 52 4.4 130 Immunology, **1994**, 156, 480-92 Producer cells of interleukin 12. Parasitology Today, 1993, 9, 97 51 9 Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. Journal of Experimental 16.6 50 1458 Medicine, 1993, 177, 1199-204 Characterization of a human monocyte antigen, B148.4, regulated during cell differentiation and 8 6.5 49 activation. Journal of Leukocyte Biology, 1993, 53, 390-8 Cytokine cross-talk between phagocytic cells and lymphocytes: relevance for differentiation/activation of phagocytic cells and regulation of adaptive immunity. Journal of 48 59

47	Enhancing effect of natural killer cell stimulatory factor (NKSF/interleukin-12) on cell-mediated cytotoxicity against tumor-derived and virus-infected cells. <i>European Journal of Immunology</i> , 1993 , 23, 1826-30	6.1	127
46	Interleukin-12 and its role in the generation of TH1 cells. <i>Trends in Immunology</i> , 1993 , 14, 335-8		785
45	Differential effects of tyrosine kinase inhibition in CD69 antigen expression and lytic activity induced by rIL-2, rIL-12, and rIFN-alpha in human NK cells. <i>Cellular Immunology</i> , 1993 , 150, 382-90	4.4	32
44	Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. <i>Journal of Experimental Medicine</i> , 1993 , 178, 1041-8	16.6	1198
43	Morphological and functional differences between HLA-DR+ peripheral blood dendritic cells and HLA-DR+ IFN-alpha producing cells. <i>Advances in Experimental Medicine and Biology</i> , 1993 , 329, 173-8	3.6	18
42	Induction of HLA class II molecules on human T cells: relationship to immunoregulation and the pathogenesis of AIDS. <i>DNA and Cell Biology</i> , 1992 , 11, 265-8	3.6	12
41	Natural killer cell stimulatory factor (NKSF) or interleukin-12 is a key regulator of immune response and inflammation. <i>Progress in Growth Factor Research</i> , 1992 , 4, 355-68		128
40	Role of the production of natural killer cell stimulatory factor (NKSF/IL-12) in the ability of B cell lines to stimulate T and NK cell proliferation. <i>Cellular Immunology</i> , 1992 , 145, 187-98	4.4	43
39	Regulation of tumor necrosis factor production by monocyte-macrophages and lymphocytes. <i>Immunologic Research</i> , 1991 , 10, 89-103	4.3	20
38	Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. <i>Journal of Experimental Medicine</i> , 1991 , 173, 869	9 1 696	839
37	Natural killer cell-mediated lysis of herpes simplex virus-infected fibroblasts: inability to detect soluble factors that contribute to lysis. <i>Cellular Immunology</i> , 1990 , 127, 221-9	4.4	3
36	Tumor Necrosis Factor is a Differentiation-Inducing Factor for Hematopoietic Cells 1990 , 114-119		
35	Interferon gamma induces in human neutrophils and macrophages expression of the mRNA for the high affinity receptor for monomeric IgG (Fc gamma R-I or CD64). <i>Biochemical and Biophysical Research Communications</i> , 1990 , 170, 582-8	3.4	56
34	Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. <i>Journal of Experimental Medicine</i> , 1989 , 170, 827-45	16.6	1650
33	Biology of natural killer cells. <i>Advances in Immunology</i> , 1989 , 47, 187-376	5.6	2229
32	Control of Hematopoietic Progenitor Cells by Natural Killer Cells 1989 , 247-266		
31	Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. <i>Journal of Experimental Medicine</i> , 1988 , 167, 452-72	16.6	316
30	Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. <i>Journal of Experimental Medicine</i> , 1987 , 165, 1581-94	16.6	323

(1980-1987)

29	Comparative binding of murine and human monoclonal antibodies reacting with myelin-associated glycoprotein to myelin and human lymphocytes. <i>Journal of Neuroimmunology</i> , 1987 , 15, 229-42	3.5	9
28	Regulation of hematopoiesis by T lymphocytes and natural killer cells. <i>Critical Reviews in Oncology/Hematology</i> , 1987 , 7, 219-65	7	17
27	Immune Interferon and Cytotoxins: Regulatory Effects on Myeloid Cells 1987, 267-305		4
26	Fc Receptor-Ligand Interaction Induces Activation of Human Natural Killer Cells 1987 , 815-825		
25	Regulation of activation and proliferation of human natural killer cells. <i>Advances in Experimental Medicine and Biology</i> , 1987 , 213, 285-98	3.6	2
24	Tumor necrosis factor and lymphotoxin induce differentiation of human myeloid cell lines in synergy with immune interferon. <i>Journal of Experimental Medicine</i> , 1986 , 164, 1206-25	16.6	211
23	Immune interferon: a pleiotropic lymphokine with multiple effects. <i>Trends in Immunology</i> , 1985 , 6, 131	-6	615
22	Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. <i>Journal of Experimental Medicine</i> , 1985 , 162, 1512-30	16.6	212
21	Response of resting human peripheral blood natural killer cells to interleukin 2. <i>Journal of Experimental Medicine</i> , 1984 , 160, 1147-69	16.6	541
20	Natural Killer Cells in Viral Infection 1984 , 11-19		6
20 19	Natural Killer Cells in Viral Infection 1984, 11-19 Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. American Journal of Hematology, 1983, 14, 255-69	7.1	26
	Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies.	7.1 16.6	26
19	Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. American Journal of Hematology, 1983, 14, 255-69 Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid	,	26
19 18	Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. American Journal of Hematology, 1983, 14, 255-69 Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells. Journal of Experimental Medicine, 1983, 158, 1092-113 Binding of platelets to human monocytes: a source of artifacts in the study of the specificity of	16.6	26 278
19 18 17	Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. <i>American Journal of Hematology</i> , 1983 , 14, 255-69 Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells. <i>Journal of Experimental Medicine</i> , 1983 , 158, 1092-113 Binding of platelets to human monocytes: a source of artifacts in the study of the specificity of antileukocyte antibodies. <i>Journal of Immunological Methods</i> , 1982 , 50, 269-76 PHENOTYPIC CHARACTERIZATION OF HUMAN NATURAL KILLER AND ANTIBODY-DEPENDENT	16.6	26 278 22
19 18 17 16	Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. American Journal of Hematology, 1983, 14, 255-69 Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells. Journal of Experimental Medicine, 1983, 158, 1092-113 Binding of platelets to human monocytes: a source of artifacts in the study of the specificity of antileukocyte antibodies. Journal of Immunological Methods, 1982, 50, 269-76 PHENOTYPIC CHARACTERIZATION OF HUMAN NATURAL KILLER AND ANTIBODY-DEPENDENT KILLER CELLS AS AN HOMOGENEOUS AND DISCRETE CELL SUBSET 1982, 39-45 INTERFERONS AND NATURAL KILLER CELLS: INTERACTING SYSTEMS OF NON-SPECIFIC HOST	16.6	26 278 22
19 18 17 16	Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. American Journal of Hematology, 1983, 14, 255-69 Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells. Journal of Experimental Medicine, 1983, 158, 1092-113 Binding of platelets to human monocytes: a source of artifacts in the study of the specificity of antileukocyte antibodies. Journal of Immunological Methods, 1982, 50, 269-76 PHENOTYPIC CHARACTERIZATION OF HUMAN NATURAL KILLER AND ANTIBODY-DEPENDENT KILLER CELLS AS AN HOMOGENEOUS AND DISCRETE CELL SUBSET 1982, 39-45 INTERFERONS AND NATURAL KILLER CELLS: INTERACTING SYSTEMS OF NON-SPECIFIC HOST DEFENSE 1982, 369-374 Monoclonal antibodies specific for kappa chain, lambda chain, and IgG1 of human gammaglobulin.	16.6	26 278 22 3

SPONTANEOUS CELL-MEDIATED CYTOTOXICITY: MODULATION BY INTERFERON **1980**, 655-670

2

INTERFERON PRODUCTION IN LYMPHOCYTES CULTURED WITH TUMOR-DERIVED CELLS **1980**, 1199-1211

9 OPPOSING EFFECTS OF INTERFERON ON NATURAL KILLER AND TARGET CELLS **1979**, 75-81

8	Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. <i>Journal of Experimental Medicine</i> , 1978 , 147, 1314-33	16.6	641
7	Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation. <i>Journal of Experimental Medicine</i> , 1978 , 147, 1299-1313	16.6	266
6	Evaluation of the effect of ammonium chloride treatment on the activity of human effector cells in antibody-dependent and spontaneous cell-mediated cytotoxicity. <i>Journal of Immunological Methods</i> , 1977 , 15, 97-100	2.5	5
5	Tumour cell lines induce interferon in human lymphocytes. <i>Nature</i> , 1977 , 270, 611-3	50.4	86
4	Cell-mediated cytotoxicity to SV40-specific tumour-associated antigens. <i>Nature</i> , 1976 , 261, 312-4	50.4	108
3	Models for recognition of virally modified cells by immune thymus-derived lymphocytes. <i>Immunogenetics</i> , 1976 , 3, 517-524	3.2	97
2	Membrane immunofluorescence in human transplantation biology. <i>Annals of the New York Academy of Sciences</i> , 1975 , 254, 280-8	6.5	

The Plasticity of Dendritic Cells Populations in Promoting Th-cell Responses385-403