Masato Oikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4272420/publications.pdf

Version: 2024-02-01

172457 161849 3,394 105 29 54 citations h-index g-index papers 130 130 130 2753 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. Journal of Clinical Investigation, 2000, 105, 497-504.	8.2	678
2	Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. International Immunology, 2001, 13, 1595-1599.	4.0	233
3	Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. FEBS Journal, 2000, 267, 3032-3039.	0.2	164
4	Total Synthesis of (-)-Grayanotoxin III. Journal of Organic Chemistry, 1994, 59, 5532-5534.	3.2	110
5	Total Synthesis of Tautomycin. Journal of Organic Chemistry, 1995, 60, 5048-5068.	3.2	105
6	First Total Synthesis of the Re-Type Lipopolysaccharide. Angewandte Chemie - International Edition, 2001, 40, 1475-1480.	13.8	103
7	Divergent synthesis and biological activities of lipid A analogues of shorter acyl chains. Tetrahedron, 1998, 54, 4033-4050.	1.9	80
8	Regioselective Reductive Opening of 4,6-O-Benzylidene Acetals of Glucose or Glucosamine Derivatives by BH3â <me2nh -="" 1179-1180.<="" 1996,="" bf3â<oet2.="" synlett,="" td=""><td>1.8</td><td>76</td></me2nh>	1.8	76
9	Cytochalasin D acts as an inhibitor of the actin–cofilin interaction. Biochemical and Biophysical Research Communications, 2012, 424, 52-57.	2.1	70
10	Endotoxic and immunobiological activities of a chemically synthesized lipid A ofHelicobacter pyloristrain 206–1. FEMS Immunology and Medical Microbiology, 2003, 36, 1-7.	2.7	60
11	A Divergent Synthesis of Lipid A and Its Chemically Stable Unnatural Analogues. Bulletin of the Chemical Society of Japan, 1999, 72, 1377-1385.	3.2	59
12	The spiroketals containing a benzyloxymethyl moiety at C8 position showed the most potent apoptosis-inducing activity. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2007-2012.	2.2	47
13	Lipopolysaccharide-binding protein-mediated interaction of lipid A from different origin with phospholipid membranes. Physical Chemistry Chemical Physics, 2000, 2, 4521-4528.	2.8	46
14	Total Synthesis and Biological Evaluation of Neodysiherbaine A and Analogues. Journal of Organic Chemistry, 2006, 71, 5208-5220.	3.2	46
15	Acidic, Selective Monoacylation ofvic-Diols. Journal of Organic Chemistry, 1996, 61, 4469-4471.	3.2	43
16	Interference terahertz label-free imaging for protein detection on a membrane. Optics Express, 2008, 16, 22083.	3.4	40
17	Regioselective Domino Metathesis of 7â€Oxanorbornenes and Its Application to the Synthesis of Biologically Active Glutamate Analogues. European Journal of Organic Chemistry, 2008, 2008, 5215-5220.	2.4	39
18	On a practical synthesis of \hat{l}^2 -hydroxy fatty acid derivatives. Tetrahedron: Asymmetry, 1995, 6, 961-966.	1.8	38

#	Article	IF	Citations
19	Assignment of the Absolute Configuration of Goniodomin A by NMR Spectroscopy and Synthesis of Model Compounds. Organic Letters, 2008, 10, 1013-1016.	4.6	38
20	New Efficient Synthesis of a Biosynthetic Precursor of Lipid A. Bulletin of the Chemical Society of Japan, 1997, 70, 1435-1440.	3.2	36
21	Damnacanthal, an effective inhibitor of LIM-kinase, inhibits cell migration and invasion. Molecular Biology of the Cell, 2014, 25, 828-840.	2.1	36
22	Reductive opening of α-methylspiroketals. Tetrahedron, 1995, 51, 6237-6254.	1.9	35
23	Synthesis of Helicobacter pylori lipid A and its analogue using p-(trifluoromethyl)benzyl protecting group. Tetrahedron Letters, 2000, 41, 6843-6847.	1.4	35
24	Parallel synthesis of tandem Ugi/Diels–Alder reaction products on a soluble polymer support directed toward split-pool realization of a small molecule library. Tetrahedron Letters, 2005, 46, 415-418.	1.4	34
25	Regioselective Domino Metathesis of Unsymmetrical 7â€Oxanorbornenes with Electronâ€Rich Vinyl Acetate toward Biologically Active Glutamate Analogues. European Journal of Organic Chemistry, 2009, 2009, 5531-5548.	2.4	34
26	Synthesis and domino metathesis of functionalized 7-oxanorbornene analogsÂtoward cis-fused heterocycles. Tetrahedron, 2008, 64, 2740-2749.	1.9	33
27	Different Moieties of Tautomycin Involved in Protein Phosphatase Inhibition and Induction of Apoptosis. Biochemical Pharmacology, 1998, 55, 995-1003.	4.4	31
28	Studies toward the total synthesis of azaspiracids: synthesis of the FGHI ring domain. Tetrahedron Letters, 2003, 44, 6199-6201.	1.4	31
29	Rapid and Efficient Synthesis of Dysiherbaine and Analogues to Explore Structureâ "Activity Relationships. Journal of Organic Chemistry, 2008, 73, 264-273.	3.2	31
30	Structural basis for endotoxic and antagonistic activities: investigation with novel synthetic lipid A analogs. Journal of Endotoxin Research, 2003, 9, 361-366.	2.5	29
31	Three-Component, Diastereoselective Prins–Ritter Reaction for cis-Fused 4-Amidotetrahydropyrans toward a Precursor for Possible Neuronal Receptor Ligands. ACS Combinatorial Science, 2016, 18, 399-404.	3.8	29
32	One-pot preparation and activation of glycosyl trichloroacetimidates: operationally simple glycosylation induced by combined use of solid-supported, reactivity-opposing reagents. Tetrahedron Letters, 2004, 45, 4039-4042.	1.4	28
33	Enzymatic Preparation of (S)-3-Hydroxytetradecanoic Acid and Synthesis of Unnatural Analogues of Lipid A Containing the (S)-Acid. Bulletin of the Chemical Society of Japan, 1997, 70, 1441-1450.	3.2	27
34	Synthetic study on tautomycin. Stereocontrolled synthesis of $C(1)\hat{i}$ —, $C(18)$ fragment using a strategy of selective reduction of spiroketal. Tetrahedron Letters, 1993, 34, 4797-4800.	1.4	26
35	Total synthesis of tautomycin: Efficient aldol coupling of two large subunits. Tetrahedron Letters, 1994, 35, 4809-4812.	1.4	26
36	Synthesis of [3H]-Labeled Bioactive Lipid A Analogs and Their Use for Detection of Lipid A-Binding Proteins on Murine Macrophages. Bulletin of the Chemical Society of Japan, 2001, 74, 2189-2197.	3.2	26

#	Article	IF	Citations
37	Simple formylacetal (CH2) as a novel linker for saccharide synthesis on soluble-polymer support. Tetrahedron Letters, 2004, 45, 787-790.	1.4	25
38	Total synthesis of dysiherbaine. Tetrahedron Letters, 2007, 48, 5697-5700.	1.4	25
39	Simultaneous accumulation of both skeletal and appendage-based diversities on tandem Ugi/Diels–Alder products. Tetrahedron Letters, 2005, 46, 5863-5866.	1.4	24
40	Synthesis of an analog of biosynthetic precursor Ia of lipid A by an improved method: a novel antagonist containing four (S)-3-hydroxy fatty acids. Tetrahedron Letters, 1995, 36, 7455-7458.	1.4	23
41	NMR conformational analysis of biosynthetic precursor-type lipid A: monomolecular state and supramolecular assembly. Organic and Biomolecular Chemistry, 2004, 2, 3557.	2.8	23
42	Design, total synthesis, and biological evaluation of neodysiherbaine A derivative as potential probes. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5784-5787.	2.2	23
43	Studies on an (<i>S</i>)-2-Amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic Acid (AMPA) Receptor Antagonist IKM-159: Asymmetric Synthesis, Neuroactivity, and Structural Characterization. Journal of Medicinal Chemistry, 2013, 56, 2283-2293.	6.4	23
44	Synthesis of 13C-Labeled Biosynthetic Precursor of Lipid A and Its Analogue with Shorter Acyl Chains. Bulletin of the Chemical Society of Japan, 1999, 72, 1857-1867.	3.2	22
45	A series of structurally novel heterotricyclic αâ€aminoâ€3â€hydroxylâ€5â€methylâ€4â€isoxazoleâ€propionate receptorâ€selective antagonists. British Journal of Pharmacology, 2010, 160, 1417-1429.	5.4	22
46	Synthetic Study of Azaspiracid-1:  Synthesis of the EFGHI-Ring Fragment. Organic Letters, 2006, 8, 3943-3946.	4.6	21
47	Benzyl Trityl Ether and DDQ as New Tritylating Reagents. Synlett, 1998, 1998, 757-760.	1.8	20
48	New Efficient Route for Synthesis of Lipid A by using Affinity Separation. Synlett, 2001, 2001, 1693-1698.	1.8	19
49	Asymmetric Synthesis and in vivo Biological Inactivity of the Rightâ€Hand Terpenoid Fragment of Terpendole E. European Journal of Organic Chemistry, 2011, 2011, 538-546.	2.4	18
50	Protoaculeine B, a Putative $\langle i \rangle N \langle i \rangle$ -Terminal Residue for the Novel Peptide Toxin Aculeines. Organic Letters, 2014, 16, 3090-3093.	4.6	17
51	Synthesis and Biological Activities of Lipid A Analogs Possessing \hat{I}^2 -Glycosidic Linkage at 1-Position. Bulletin of the Chemical Society of Japan, 2003, 76, 485-500.	3.2	16
52	Total Synthesis of (±)â€Dysibetaine CPa and Analogs. European Journal of Organic Chemistry, 2012, 2012, 5789-5802.	2.4	16
53	Synthetic study of tautomycetin: Synthesis of two large subunits. Tetrahedron Letters, 1997, 38, 7897-7900.	1.4	15
54	Synthesis and bioactivity of a fluorescence-labeled lipid A analogue. Tetrahedron Letters, 1999, 40, 5199-5202.	1.4	15

#	Article	IF	CITATIONS
55	2JC,HIndex:  A Nondestructive NMR Method for Differentiation of Aldohexopyranosyl Residues. Organic Letters, 2005, 7, 661-664.	4.6	15
56	Synthetic studies on dragmacidin D: synthesis of the left-hand fragment. Tetrahedron Letters, 2008, 49, 7197-7199.	1.4	15
57	Improved synthesis and in vitro/in vivo activities of natural product-inspired, artificial glutamate analogs. Bioorganic and Medicinal Chemistry, 2010, 18, 3795-3804.	3.0	14
58	Highly regio- and stereoselective reductions of spiroketals. Tetrahedron Letters, 1993, 34, 5303-5306.	1.4	13
59	Alkoxyacetyl (AAc) group as a useful linker for organic synthesis on poly(ethylene glycol) support. Tetrahedron Letters, 2004, 45, 2371-2375.	1.4	13
60	Synthesis of dysiherbaine analogue. Tetrahedron Letters, 2005, 46, 5559-5562.	1.4	13
61	Synthetic Studies on Dragmacidin D: Synthesis and Assembly of Three Fragments Towards an Advanced Intermediate. European Journal of Organic Chemistry, 2011, 2011, 4654-4666.	2.4	13
62	Biology- and Diversity-Oriented Domino Reactions for Synthesis of AMPA Receptor Antagonist IKM-159 and Analogues. Synthesis, 2013, 45, 3106-3117.	2.3	13
63	Skeletal diversity by allylation/RCM on Ugi four-component coupling reaction products. Tetrahedron Letters, 2006, 47, 4763-4767.	1.4	12
64	A three-component approach to isoquinoline derivatives by cycloaddition/Heck reaction sequence. Tetrahedron Letters, 2007, 48, 4255-4258.	1.4	12
65	Chemospecific Allylation and Domino Metathesis of 7â€Oxanorbornenes for Skeletal and Appendage Diversity. European Journal of Organic Chemistry, 2009, 2009, 72-84.	2.4	12
66	Total synthesis of (±)-dysibetaine CPa. Tetrahedron Letters, 2011, 52, 4402-4404.	1.4	11
67	Structure–activity relationships of IKM-159: Diverted synthesis and biological evaluation of a series of C5-oxy analogs. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1869-1871.	2.2	11
68	Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B. Organic Letters, 2018, 20, 3403-3407.	4.6	11
69	Synthetic Studies on Grayanotoxins. Diastereofacially Selective Diels-Alder Reaction of 4-Benzyloxy-2-pentenoate. Synlett, 1994, 1994, 801-804.	1.8	10
70	Synthetic Study of Tautomycin and Tautomycetin. Stereocontrolled Construction of the Dialkylmaleic Anhydride Segment. Bioscience, Biotechnology and Biochemistry, 1995, 59, 2104-2110.	1.3	10
71	First enantioselective total synthesis of (â^')-dysibetaine CPa and absolute configurations of natural product. Tetrahedron Letters, 2013, 54, 5911-5912.	1.4	10
72	Total synthesis of lycoperdic acid and its C4-epimer. Tetrahedron Letters, 2019, 60, 2067-2069.	1.4	10

#	Article	IF	CITATIONS
73	Conformational Study of a Tetraacyl Biosynthetic Precursor of Lipid A by NMR. Bulletin of the Chemical Society of Japan, 2001, 74, 1455-1461.	3.2	9
74	Enantiodivergent syntheses of (\hat{a}°)- and (+)-dysibetaine CPa and N-desmethyl analog. Tetrahedron, 2014, 70, 4587-4594.	1.9	9
75	Studies directed toward synthesis of taepeenin D: construction of the C4 stereogenic center and the CD benzofuran rings. Tetrahedron Letters, 2016, 57, 2628-2630.	1.4	9
76	Skeletal Diversity by Ugi Four-Component Coupling Reaction and Post-Ugi Reactions. Heterocycles, 2007, 73, 377.	0.7	9
77	Chemical Synthesis of Bacterial Glycoconjugates in Relation to Their Immunostimulating Activity Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1996, 54, 976-987.	0.1	9
78	Synthetic Studies on Grayanotoxins. Stereocontrolled Construction of CD-Ring of Grayanotoxins. Synlett, 1994, 1994, 805-808.	1.8	8
79	Total Synthesis of the Proposed Structure for Protoaculeine B, a Polycationic Marine Sponge Metabolite, with a Homogeneous Long-Chain Polyamine. Journal of Natural Products, 2020, 83, 2769-2775.	3.0	8
80	1-Hydroxy-2-methyl-2-propyl Isocyanide (HMPI) as a New Convertible Isocyanide for the Ugi Four-Component-Coupling Reaction. Synlett, 2013, 24, 2014-2018.	1.8	7
81	Prins Reaction Using Trioxane for Trisubstituted, cis-Fused Hexahydro-2H-furo[3,2-b]pyran Derivative. Heterocycles, 2018, 96, 453.	0.7	7
82	Structure Revision of Protoaculeine B, a Post-translationally Modified N-Terminal Residue in the Peptide Toxin Aculeine B. Journal of Natural Products, 2021, 84, 1203-1209.	3.0	7
83	Efficient Degradation of Tautomycin to a Useful Synthetic Intermediate. Bioscience, Biotechnology and Biochemistry, 1994, 58, 1933-1935.	1.3	6
84	A Synthesis of (-)-cis-2-Aminomethylcyclopropanecarboxylic Acid [(-)-CAMP]. Synlett, 2013, 24, 886-888.	1.8	6
85	Asymmetric Organocatalytic Cyclopropanation on Chiral Menthyl Acrylate for the Synthesis of ($\hat{a}\in$ ")-trans-2-Aminomethylcyclopropanecarboxylic Acid [($\hat{a}\in$ ")-TAMP]. Synlett, 2014, 25, 987-990.	1.8	6
86	Synthetic Study of a Bioactive 3H-Labeled Analogue of Lipid A. Synlett, 1996, 1996, 252-254.	1.8	5
87	An Improved Synthesis of Arylboronates toward Twenty Novel 1,3-Disubstituted 4-Amino-1H-pyrazolo[3,4-d]pyrimidine Analogs. Heterocycles, 2010, 81, 73.	0.7	5
88	Synthetic Chemistry and Function of Bacterial Cell Surface Glycoconjugates. Journal of the Chinese Chemical Society, 2002, 49, 453-458.	1.4	4
89	2-Oxo-1,2-ethylenedioxy group as a linker for solution-, liquid-, and solid-phase syntheses to discover drug-like small molecules. Tetrahedron Letters, 2005, 46, 4667-4670.	1.4	4
90	Enantioselective Synthesis of (+)- $\langle i \rangle N \langle i \rangle$ -(Desmethyl)dysibetaine CPb. Chemistry Letters, 2015, 44, 253-255.	1.3	4

#	Article	IF	CITATIONS
91	A monocyclic neodysiherbaine analog: Synthesis and evaluation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5164-5167.	2.2	4
92	Photoremovable NPEC group compatible with Ns protecting group in polyamine synthesis. Tetrahedron Letters, 2018, 59, 4259-4262.	1.4	3
93	An Empirical Model for Stereochemical Control in the Cyclization of Cyclopropanetricarboxylic Acid Esters. Bulletin of the Chemical Society of Japan, 2019, 92, 1314-1323.	3.2	3
94	Chemical Synthesis of Re-type Lipopolysaccharide Trends in Glycoscience and Glycotechnology, 2002, 14, 115-125.	0.1	3
95	Total Synthesis of Tautomycin Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1995, 53, 1123-1132.	0.1	3
96	Synthetic study of strongylophorines: stereoselective construction of the characteristic lactone bridge. Tetrahedron Letters, 2016, 57, 3949-3951.	1.4	2
97	Four Stereoisomers of 2-Aminomethyl-1-cyclopropanecarboxylic Acid: Synthesis and Biological Evaluation. Bulletin of the Chemical Society of Japan, 2019, 92, 1816-1823.	3.2	2
98	Synthesis of Open-Chain C21-C40 Fragment of Azaspiracid-1. Heterocycles, 2009, 78, 609.	0.7	2
99	An Efficient Enantiospecific Synthesis of Neuroactive Glutamate Analogs. Heterocycles, 2020, 101, 91.	0.7	2
100	Studies on lipase-catalyzed asymmetric synthesis of (S)-(hydroxymethyl)glutamic acid (HMG). SpringerPlus, 2015, 4, 726.	1.2	1
101	Menthyl esterification allows chiral resolution for the synthesis of artificial glutamate analogs. Beilstein Journal of Organic Chemistry, 2021, 17, 540-550.	2.2	1
102	Stereoselective Formation of <i>cis</i> -Trisubstituted 1,3-Dioxanes. Chemistry Letters, 2021, 50, 1464-1466.	1.3	1
103	Hybrid Strategy of sp ³ -Rich Scaffolds for Neuroactive Agents. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 292-303.	0.1	1
104	Synthetic Strategies toward Bioactive Compounds for Chemotherapy: From Natural Products to Hybrid Strategy. Kagaku To Seibutsu, 2017, 55, 468-476.	0.0	0
105	In Memory of the Late Professor Toshiyuki Kan, His Days at High School and at Hokkaido University. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 250-255.	0.1	0