Calvin Mukarakate

List of Publications by Citations

Source: https://exaly.com/author-pdf/4272412/calvin-mukarakate-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68
papers1,884
citations24
h-index41
g-index73
ext. papers2,187
ext. citations6
avg, IF4.66
L-index

#	Paper	IF	Citations
68	Current technologies for analysis of biomass thermochemical processing: a review. <i>Analytica Chimica Acta</i> , 2009 , 651, 117-38	6.6	208
67	Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors. <i>Green Chemistry</i> , 2014 , 16, 1444-1461	10	93
66	Radical chemistry in the thermal decomposition of anisole and deuterated anisoles: an investigation of aromatic growth. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 9043-56	2.8	85
65	Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. <i>Catalysis Today</i> , 2016 , 269, 175-181	5.3	82
64	Upgrading biomass pyrolysis vapors over Ezeolites: role of silica-to-alumina ratio. <i>Green Chemistry</i> , 2014 , 16, 4891-4905	10	76
63	Biomass Catalytic Pyrolysis on Ni/ZSM-5: Effects of Nickel Pretreatment and Loading. <i>Energy & Energy </i>	4.1	74
62	Thermal decomposition mechanisms of the methoxyphenols: formation of phenol, cyclopentadienone, vinylacetylene, and acetylene. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 13381-9	2.8	71
61	Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. <i>Energy and Environmental Science</i> , 2018 , 11, 2904-2918	35.4	66
60	Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. <i>Green Chemistry</i> , 2016 , 18, 5548-5557	10	61
59	Unimolecular thermal decomposition of phenol and d5-phenol: direct observation of cyclopentadiene formation via cyclohexadienone. <i>Journal of Chemical Physics</i> , 2012 , 136, 044309	3.9	59
58	Catalytic fast pyrolysis of biomass: the reactions of water and aromatic intermediates produces phenols. <i>Green Chemistry</i> , 2015 , 17, 4217-4227	10	57
57	Biomass pyrolysis: thermal decomposition mechanisms of furfural and benzaldehyde. <i>Journal of Chemical Physics</i> , 2013 , 139, 104310	3.9	53
56	Theoretical and Experimental Spectroscopy of the S2 State of CHF and CDF: Dynamically Weighted Multireference Configuration Interaction Calculations for High-Lying Electronic States. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 641-646	6.4	52
55	Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4662-4674	8.3	49
54	Catalytic upgrading of biomass pyrolysis vapors and model compounds using niobia supported Pd catalyst. <i>Applied Catalysis B: Environmental</i> , 2018 , 238, 38-50	21.8	44
53	Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading. <i>Green Chemistry</i> , 2018 , 20, 567-582	10	42
52	Molybdenum incorporated mesoporous silica catalyst for production of biofuels and value-added chemicals via catalytic fast pyrolysis. <i>Green Chemistry</i> , 2015 , 17, 3035-3046	10	41

(2006-2018)

51	Role of Biopolymers in the Deactivation of ZSM-5 during Catalytic Fast Pyrolysis of Biomass. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 10030-10038	8.3	36
50	Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 5477-5484	8.3	35
49	Fluorescence excitation and emission spectroscopy of the A1A". <i>Journal of Chemical Physics</i> , 2006 , 124, 134302	3.9	33
48	Fluorescence excitation and single vibronic level emission spectroscopy of the A 1A". <i>Journal of Chemical Physics</i> , 2006 , 124, 224314	3.9	31
47	Laser ablation with resonance-enhanced multiphoton ionization time-of-flight mass spectrometry for determining aromatic lignin volatilization products from biomass. <i>Review of Scientific Instruments</i> , 2011 , 82, 033104	1.7	29
46	Unimolecular thermal decomposition of dimethoxybenzenes. <i>Journal of Chemical Physics</i> , 2014 , 140, 234302	3.9	28
45	Catalytic Pyrolysis of Pine Over HZSM-5 with Different Binders. <i>Topics in Catalysis</i> , 2016 , 59, 94-108	2.3	25
44	Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives. <i>Wiley Interdisciplinary Reviews: Energy and Environment</i> , 2018 , 7, e297	4.7	23
43	High resolution probe of spin-orbit coupling and the singlet-triplet gap in chlorocarbene. <i>Journal of Chemical Physics</i> , 2008 , 128, 171101	3.9	23
42	Characterization and Catalytic Upgrading of Aqueous Stream Carbon from Catalytic Fast Pyrolysis of Biomass. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 11761-11769	8.3	22
41	Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels. <i>Energy & amp; Fuels</i> , 2017 , 31, 160	04:1:60	7 21
40	Valorization of aqueous waste streams from thermochemical biorefineries. <i>Green Chemistry</i> , 2019 , 21, 4217-4230	10	20
39	Dispersed fluorescence spectroscopy of jet-cooled HCF and DCF: Vibrational structure of the X 1AS state. <i>Journal of Chemical Physics</i> , 2005 , 123, 014314	3.9	20
38	Elucidating Zeolite Deactivation Mechanisms During Biomass Catalytic Fast Pyrolysis from Model Reactions and Zeolite Syntheses. <i>Topics in Catalysis</i> , 2016 , 59, 73-85	2.3	17
37	Catalytic Upgrading of Biomass-Derived Compounds via CII Coupling Reactions: Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 24025-24035	3.8	16
36	Stimulated emission pumping spectroscopy of the [X](1)ASstate of CHF. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 466-71	2.8	16
35	High resolution study of spin-orbit mixing and the singlet-triplet gap in chlorocarbene: stimulated emission pumping spectroscopy of CH(35)Cl and CD(35)Cl. <i>Journal of Chemical Physics</i> , 2008 , 129, 1043	0 3 .9	16
34	Electronic spectroscopy of the A1ASS. Physical Chemistry Chemical Physics, 2006, 8, 707-13	3.6	16

33	Integrated Biorefining: Coproduction of Renewable Resol Biopolymer for Aqueous Stream Valorization. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6615-6625	8.3	15
32	A perspective on biomass-derived biofuels: From catalyst design principles to fuel properties. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123198	12.8	14
31	Furan Production from Glycoaldehyde over HZSM-5. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2615-2623	8.3	14
3 0	Ga/ZSM-5 catalyst improves hydrocarbon yields and increases alkene selectivity during catalytic fast pyrolysis of biomass with co-fed hydrogen. <i>Green Chemistry</i> , 2020 , 22, 2403-2418	10	13
29	Isotopic Studies for Tracking Biogenic Carbon during Co-processing of Biomass and Vacuum Gas Oil. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2652-2664	8.3	11
28	Single vibronic level emission spectroscopy and fluorescence lifetime of the . <i>Chemical Physics Letters</i> , 2007 , 449, 282-285	2.5	11
27	Single vibronic level emission spectroscopy of the system of dibromocarbene. <i>Journal of Molecular Spectroscopy</i> , 2007 , 241, 136-142	1.3	11
26	Probing spin-orbit mixing and the singlet-triplet gap in dichloromethylene via Ka-sorted emission spectra. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 4320-6	3.6	11
25	Vapor-Phase Stabilization of Biomass Pyrolysis Vapors Using Mixed-Metal Oxide Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 7386-7394	8.3	9
24	Optical-optical double resonance spectroscopy of the quasi-linear S2 state of CHF and CDF. II. Predissociation and mode-specific dynamics. <i>Journal of Chemical Physics</i> , 2011 , 135, 104316	3.9	9
23	Spectroscopy and dynamics of the predissociated, quasi-linear S2 state of chlorocarbene. <i>Journal of Chemical Physics</i> , 2012 , 137, 104307	3.9	9
22	Unraveling the A(1)B1 . Journal of Physical Chemistry A, 2008, 112, 11355-62	2.8	9
21	Electronic spectroscopy of the system of CDCl. <i>Journal of Molecular Spectroscopy</i> , 2007 , 241, 143-150	1.3	9
20	Electronic spectroscopy, lifetimes, and barrier to linearity in the A🛭B1<-X🗓A1 system of dibromocarbene. <i>Journal of Molecular Spectroscopy</i> , 2007 , 241, 180-185	1.3	9
19	Laser spectroscopy of a halocarbocation in the gas phase: CH2I+. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9320-1	16.4	9
18	Optical-optical double resonance spectroscopy of the quasi-linear S2 state of CHF and CDF. I. Spectroscopic analysis. <i>Journal of Chemical Physics</i> , 2011 , 135, 104315	3.9	8
17	Electronic spectroscopy of an isolated halocarbocation: the iodomethyl cation CH2I+ and its deuterated isotopomers. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 10562-6	2.8	8
16	Ex situ upgrading of pyrolysis vapors over PtTiO2: extraction of apparent kinetics via hierarchical transport modeling. <i>Reaction Chemistry and Engineering</i> , 2021 , 6, 125-137	4.9	8

LIST OF PUBLICATIONS

15	Detailed Oil Compositional Analysis Enables Evaluation of Impact of Temperature and Biomass-to-Catalyst Ratio on ex Situ Catalytic Fast Pyrolysis of Pine Vapors over ZSM-5. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1762-1773	8.3	7	
14	Hierarchically Structured CeO Catalyst Particles From Nanocellulose/Alginate Templates for Upgrading of Fast Pyrolysis Vapors. <i>Frontiers in Chemistry</i> , 2019 , 7, 730	5	6	
13	Electronic spectroscopy of the A1A" X1ASsystem of CDBr. <i>Journal of Chemical Physics</i> , 2006 , 125, 09430	05 3.9	6	
12	Estimating the Temperature Experienced by Biomass Particles during Fast Pyrolysis Using Microscopic Analysis of Biochars. <i>Energy & Energy & Energy</i>	4.1	5	
11	Reassignment of the electronic origin in the system of dibromocarbene. <i>Journal of Molecular Spectroscopy</i> , 2006 , 240, 139-140	1.3	5	
10	Optimization of Biomass Pyrolysis Vapor Upgrading Using a Laminar Entrained-Flow Reactor System. <i>Energy & Documents</i> , 2020, 34, 6030-6040	4.1	4	
9	Single vibronic level emission spectroscopy of the system of bromochlorocarbene. <i>Journal of Molecular Spectroscopy</i> , 2007 , 246, 113-117	1.3	4	
8	Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels: 2019 State of Technology and Future Research		4	
7	Online Biogenic Carbon Analysis Enables Refineries to Reduce Carbon Footprint during Coprocessing Biomass- and Petroleum-Derived Liquids. <i>Analytical Chemistry</i> , 2021 , 93, 4351-4360	7.8	3	
6	Optimizing Process Conditions during Catalytic Fast Pyrolysis of Pine with Pt/TiO2Improving the Viability of a Multiple-Fixed-Bed Configuration. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 123	35 ⁸ 724	5 ³	
5	Fast Pyrolysis of Opuntia ficus-indica (Prickly Pear) and Grindelia squarrosa (Gumweed). <i>Energy & Energy Fuels</i> , 2018 , 32, 3510-3518	4.1	2	
4	Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels: 2018 State of Technology and Future Research		2	
3	Predicting thermal excursions during in situ oxidative regeneration of packed bed catalytic fast pyrolysis catalyst. <i>Reaction Chemistry and Engineering</i> , 2021 , 6, 888-904	4.9	2	
2	Advanced spectrometric methods for characterizing bio-oils to enable refineries to reduce fuel carbon intensity during co-processing. <i>Applied Spectroscopy Reviews</i> ,1-11	4.5	1	
1	Multi-scale Characterization Study Enabling Deactivation Mechanism in Formed Zeolite Catalyst. Microscopy and Microanalysis, 2020 , 26, 1270-1271	0.5		