List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4272296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Androgen receptor mutations modulate activation by 11-oxygenated androgens and glucocorticoids. Prostate Cancer and Prostatic Diseases, 2023, 26, 293-301.	3.9	12
2	Hepatocyteâ€specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatinâ€like) Tj ETQq0 2022, 75, 125-139.	0 0 rgBT /0 7.3	Overlock 10 Tf 25
3	Defective Lipid Droplet–Lysosome Interaction Causes Fatty Liver Disease as Evidenced by Human Mutations in TMEM199 and CCDC115. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 583-597.	4.5	8
4	FGF1 and insulin control lipolysis by convergent pathways. Cell Metabolism, 2022, 34, 171-183.e6.	16.2	36
5	A novel role for GalNAc-T2 dependent glycosylation in energy homeostasis. Molecular Metabolism, 2022, , 101472.	6.5	5
6	Mice with a deficiency in Peroxisomal Membrane Protein 4 (PXMP4) display mild changes in hepatic lipid metabolism. Scientific Reports, 2022, 12, 2512.	3.3	7
7	Induction of fecal cholesterol excretion is not effective for the treatment of hyperbilirubinemia in Gunn rats. Pediatric Research, 2021, 89, 510-517.	2.3	1
8	Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 309-325.e3.	4.5	46
9	Regulation of Intestinal UDP-Clucuronosyltransferase 1A1 by the Farnesoid X Receptor Agonist Obeticholic Acid Is Controlled by Constitutive Androstane Receptor through Intestinal Maturation. Drug Metabolism and Disposition, 2021, 49, 12-19.	3.3	8
10	Shortâ€ŧerm protein restriction at advanced age stimulates FGF21 signalling, energy expenditure and browning of white adipose tissue. FEBS Journal, 2021, 288, 2257-2277.	4.7	18
11	24(S)-Saringosterol Prevents Cognitive Decline in a Mouse Model for Alzheimer's Disease. Marine Drugs, 2021, 19, 190.	4.6	12
12	Increased insulin sensitivity and diminished pancreatic beta-cell function in DNA repair deficient Ercc1 mice. Metabolism: Clinical and Experimental, 2021, 117, 154711.	3.4	9
13	Potential of therapeutic bile acids in the treatment of neonatal Hyperbilirubinemia. Scientific Reports, 2021, 11, 11107.	3.3	12
14	Age-related susceptibility to insulin resistance arises from a combination of CPT1B decline and lipid overload. BMC Biology, 2021, 19, 154.	3.8	12
15	Impaired Intestinal Farnesoid X Receptor Signaling in Cystic Fibrosis Mice. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 47-60.	4.5	9
16	Pegbelfermin (BMS-986036): an investigational PEGylated fibroblast growth factor 21 analogue for the treatment of nonalcoholic steatohepatitis. Expert Opinion on Investigational Drugs, 2020, 29, 125-133.	4.1	40
17	The Beneficial Effects of Apical Sodiumâ€Dependent Bile Acid Transporter Inactivation Depend on Dietary Fat Composition. Molecular Nutrition and Food Research, 2020, 64, e2000750.	3.3	7
18	Abnormal Liver Function Tests in Patients With COVIDâ€19: Relevance and Potential Pathogenesis. Hepatology, 2020, 72, 1864-1872.	7.3	221

JOHAN W JONKER

#	Article	IF	CITATIONS
19	Metabolic consequences of ileal interruption of the enterohepatic circulation of bile acids. American Journal of Physiology - Renal Physiology, 2020, 319, G619-G625.	3.4	24
20	Mutations in the Vâ€ATPase Assembly Factor VMA21 Cause a Congenital Disorder of Glycosylation With Autophagic Liver Disease. Hepatology, 2020, 72, 1968-1986.	7.3	32
21	Blue LED phototherapy in preterm infants: effects on an oxidative marker of DNA damage. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 628-633.	2.8	8
22	The Role of Lipophagy in the Development and Treatment of Non-Alcoholic Fatty Liver Disease. Frontiers in Endocrinology, 2020, 11, 601627.	3.5	50
23	Efficient reabsorption of transintestinally excreted cholesterol is a strong determinant for cholesterol disposal in mice. Journal of Lipid Research, 2019, 60, 1562-1572.	4.2	19
24	Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handbook of Experimental Pharmacology, 2019, 256, 207-234.	1.8	16
25	Identification of the fructose transporter GLUT5 (SLC2A5) as a novel target of nuclear receptor LXR. Scientific Reports, 2019, 9, 9299.	3.3	32
26	Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer's disease mouse model. Scientific Reports, 2019, 9, 4908.	3.3	51
27	LED-phototherapy does not induce oxidative DNA damage in hyperbilirubinemic Gunn rats. Pediatric Research, 2019, 85, 1041-1047.	2.3	7
28	Senescent cells in the development of cardiometabolic disease. Current Opinion in Lipidology, 2019, 30, 177-185.	2.7	7
29	Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application. Current Opinion in Lipidology, 2019, 30, 235-243.	2.7	40
30	Bile acid homeostasis in gastrointestinal and metabolic complications of cystic fibrosis. Journal of Cystic Fibrosis, 2019, 18, 313-320.	0.7	18
31	Defective FXR-FGF15 signaling and bile acid homeostasis in cystic fibrosis mice can be restored by the laxative polyethylene glycol. American Journal of Physiology - Renal Physiology, 2019, 316, G404-G411.	3.4	11
32	IVACAFTOR restores FGF19 regulated bile acid homeostasis in cystic fibrosis patients with an S1251N or a G551D gating mutation. Journal of Cystic Fibrosis, 2019, 18, 286-293.	0.7	26
33	TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. International Journal of Obesity, 2018, 42, 376-383.	3.4	14
34	Intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Scientific Reports, 2017, 7, 846.	3.3	32
35	Characterization of stem cell-derived liver and intestinal organoids as a model system to study nuclear receptor biology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 687-700.	3.8	11
36	Diagnosis, follow-up and treatment of cystic fibrosis-related liver disease. Current Opinion in Pulmonary Medicine, 2017, 23, 562-569.	2.6	17

#	Article	IF	CITATIONS
37	GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis. Journal of Neuroscience, 2017, 37, 9925-9938.	3.6	29
38	NF-κB p65 serine 467 phosphorylation sensitizes mice to weight gain and TNFα-or diet-induced inflammation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1785-1798.	4.1	9
39	Cystic Fibrosis–related Liver Disease. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, 443-448.	1.8	80
40	Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction. Journal of Hepatology, 2016, 65, 1198-1208.	3.7	133
41	Reply to: "Impaired expression of multidrug resistance–associated protein 2 and liver damage in erythropoietic protoporphyria― Hepatology, 2016, 63, 1743-1744.	7.3	0
42	Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2288-2293.	7.1	60
43	Short-Chain Fatty Acids Protect Against High-Fat Diet–Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes, 2015, 64, 2398-2408.	0.6	734
44	New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 273-293.	3.3	52
45	Fibroblast Growth Factor Signaling in Metabolic Regulation. Frontiers in Endocrinology, 2015, 6, 193.	3.5	100
46	Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 2014, 513, 436-439.	27.8	201
47	Hepatic Farnesoid X-Receptor Isoforms α2 and α4 Differentially Modulate Bile Salt and Lipoprotein Metabolism in Mice. PLoS ONE, 2014, 9, e115028.	2.5	30
48	Inhibition of mTORC1 by Astrin and Stress Granules Prevents Apoptosis in Cancer Cells. Cell, 2013, 154, 859-874.	28.9	243
49	Inhibition of mTORC1 by Astrin and Stress Granules Prevents Apoptosis in Cancer Cells. Cell, 2013, 155, 964-966.	28.9	1
50	Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8555-8560.	7.1	56
51	PS21 - 100. A PPAR -FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 170-170.	0.0	0
52	Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced Drug Delivery Reviews, 2012, 64, 138-153.	13.7	903
53	A PPARγ–FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature, 2012, 485, 391-394.	27.8	240
54	FXR and PXR: Potential therapeutic targets in cholestasis. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 147-158.	2.5	127

#	Article	IF	CITATIONS
55	Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature, 2011, 480, 552-556.	27.8	481
56	Exercise and PGC-1α-Independent Synchronization of Type I Muscle Metabolism and Vasculature by ERRγ. Cell Metabolism, 2011, 13, 283-293.	16.2	156
57	ERRÎ ³ Regulates Cardiac, Gastric, and Renal Potassium Homeostasis. Molecular Endocrinology, 2010, 24, 299-309.	3.7	61
58	Hepatobiliary ABC transporters: physiology, regulation and implications for disease. Frontiers in Bioscience - Landmark, 2009, 14, 4904.	3.0	20
59	SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20021-20026.	7.1	83
60	Breast cancer resistance protein (Bcrp1/Abcg2) is expressed in the harderian gland and mediates transport of conjugated protoporphyrin IX. American Journal of Physiology - Cell Physiology, 2007, 292, C2204-C2212.	4.6	30
61	ERRÎ ³ Directs and Maintains the Transition toÂOxidative Metabolism in the Postnatal Heart. Cell Metabolism, 2007, 6, 13-24.	16.2	274
62	Multidrug Transporter ABCG2/Breast Cancer Resistance Protein Secretes Riboflavin (Vitamin B 2) into Milk. Molecular and Cellular Biology, 2007, 27, 1247-1253.	2.3	191
63	Recent Advances in Molecular Pharmacology of the Histamine Systems: Organic Cation Transporters as a Histamine Transporter and Histamine Metabolism. Journal of Pharmacological Sciences, 2006, 101, 24-30.	2.5	74
64	The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nature Medicine, 2005, 11, 127-129.	30.7	376
65	Contribution of the ABC Transporters Bcrp1 and Mdr1a/1b to the Side Population Phenotype in Mammary Gland and Bone Marrow of Mice. Stem Cells, 2005, 23, 1059-1065.	3.2	126
66	Lack of Improvement of Oral Absorption of ME3277 by Prodrug Formation Is Ascribed to the Intestinal Efflux Mediated by Breast Cancer Resistant Protein (BCRP/ABCG2). Pharmaceutical Research, 2005, 22, 613-618.	3.5	29
67	Sex-Dependent Expression and Activity of the ATP-Binding Cassette Transporter Breast Cancer Resistance Protein (BCRP/ABCG2) in Liver. Molecular Pharmacology, 2005, 67, 1765-1771.	2.3	144
68	Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis, 2005, 27, 123-130.	2.8	132
69	Human Breast Cancer Resistance Protein: Interactions with Steroid Drugs, Hormones, the Dietary Carcinogen 2-Amino-1-methyl-6-phenylimidazo(4,5- <i>b</i>)pyridine, and Transport of Cimetidine. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 144-152.	2.5	258
70	Investigation of Efflux Transport of Dehydroepiandrosterone Sulfate and Mitoxantrone at the Mouse Blood-Brain Barrier: A Minor Role of Breast Cancer Resistance Protein. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 44-52.	2.5	113
71	TRANSPORT OF ANTHELMINTIC BENZIMIDAZOLE DRUGS BY BREAST CANCER RESISTANCE PROTEIN (BCRP/ABCG2). Drug Metabolism and Disposition, 2005, 33, 614-618.	3.3	120
72	The Breast Cancer Resistance Protein (BCRP/ABCG2) Affects Pharmacokinetics, Hepatobiliary Excretion, and Milk Secretion of the Antibiotic Nitrofurantoin. Molecular Pharmacology, 2005, 67, 1758-1764.	2.3	203

#	Article	IF	CITATIONS
73	Pharmacological and Physiological Functions of the Polyspecific Organic Cation Transporters: OCT1, 2, and 3 (SLC22A1-3). Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 2-9.	2.5	334
74	Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice. Drug Metabolism and Disposition, 2004, 32, 898-901.	3.3	67
75	Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced Drug Delivery Reviews, 2003, 55, 3-29.	13.7	1,259
76	Deficiency in the Organic Cation Transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in Mice Abolishes Renal Secretion of Organic Cations. Molecular and Cellular Biology, 2003, 23, 7902-7908.	2.3	244
77	Involvement of Organic Cation Transporter 1 in the Lactic Acidosis Caused by Metformin. Molecular Pharmacology, 2003, 63, 844-848.	2.3	180
78	P-glycoprotein and Mrp1 collectively protect the bone marrow from vincristine-induced toxicity in vivo. British Journal of Cancer, 2003, 89, 1776-1782.	6.4	39
79	The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Research, 2003, 63, 6447-52.	0.9	199
80	Involvement of Organic Cation Transporter 1 in Hepatic and Intestinal Distribution of Metformin. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 510-515.	2.5	398
81	Polymorphisms affecting function of the human organic cation transporter hOCT1 (SLC22A1). Pharmacogenetics and Genomics, 2002, 12, 589-590.	5.7	5
82	The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15649-15654.	7.1	759
83	Renal organic cation and nucleoside transport. Biochemical Pharmacology, 2002, 64, 185-190.	4.4	16
84	Reduced Hepatic Uptake and Intestinal Excretion of Organic Cations in Mice with a Targeted Disruption of the Organic Cation Transporter 1 (Oct1 [Slc22a1]) Gene. Molecular and Cellular Biology, 2001, 21, 5471-5477.	2.3	220
85	Role of Breast Cancer Resistance Protein in the Bioavailability and Fetal Penetration of Topotecan. Journal of the National Cancer Institute, 2000, 92, 1651-1656.	6.3	550
86	Transport of Topoisomerase I Inhibitors by the Breast Cancer Resistance Protein: Potential Clinical Implications. Annals of the New York Academy of Sciences, 2000, 922, 188-194.	3.8	100
87	Role of blood-brain barrier P-glycoprotein in limiting brain accumulation and sedative side-effects of asimadoline, a peripherally acting analgaesic drug. British Journal of Pharmacology, 1999, 127, 43-50.	5.4	98