Michiel Vos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4271465/publications.pdf

Version: 2024-02-01

40 3,331 23 40 papers citations h-index g-index

45 45 45 4763
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among <i>Bacillus cereus</i> clades. Molecular Ecology, 2022, 31, 3584-3597.	2.0	4
2	Bacterial colonisation dynamics of household plastics in a coastal environment. Science of the Total Environment, 2022, 838, 156199.	3.9	12
3	A new test suggests hundreds of amino acid polymorphisms in humans are subject to balancing selection. PLoS Biology, 2022, 20, e3001645.	2.6	5
4	Myxococcus xanthus. Trends in Microbiology, 2021, 29, 562-563.	3.5	3
5	Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis. Nature Communications, 2021, 12, 3457.	5.8	19
6	Antimicrobial resistance acquisition via natural transformation: context is everything. Current Opinion in Microbiology, 2021, 64, 133-138.	2.3	35
7	Determining the prevalence, identity and possible origin of bacterial pathogens in soil. Environmental Microbiology, 2020, 22, 5327-5340.	1.8	9
8	The evolution of bacterial pathogens in the Anthropocene. Infection, Genetics and Evolution, 2020, 86, 104611.	1.0	10
9	Zinc can counteract selection for ciprofloxacin resistance. FEMS Microbiology Letters, 2020, 367, .	0.7	16
10	Sexual Selection in Bacteria?. Trends in Microbiology, 2019, 27, 972-981.	3.5	10
11	Using the wax moth larva <i>Galleria mellonella</i> infection model to detect emerging bacterial pathogens. PeerJ, 2019, 6, e6150.	0.9	24
12	Triclosan Alters Microbial Communities in Freshwater Microcosms. Water (Switzerland), 2019, 11, 961.	1.2	15
13	Transposon mutagenesis in Pseudomonas fluorescens reveals genes involved in blue pigment production and antioxidant protection Food Microbiology, 2019, 82, 497-503.	2.1	25
14	Patterns of crossâ€resistance and collateral sensitivity between clinical antibiotics and natural antimicrobials. Evolutionary Applications, 2019, 12, 878-887.	1.5	20
15	Staphylococcus cornubiensis sp. nov., a member of the Staphylococcus intermedius Group (SIG). International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3404-3408.	0.8	31
16	Prokaryote genome fluidity is dependent on effective population size. ISME Journal, 2017, 11, 1719-1721.	4.4	100
17	The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria. Trends in Microbiology, 2017, 25, 280-292.	3.5	361
18	Are pangenomes adaptive or not?. Nature Microbiology, 2017, 2, 1576-1576.	5.9	59

#	Article	IF	Citations
19	A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium <i>Myxococcus xanthus </i> <io>i>Myxococcus xanthus </io>	4.4	52
20	No effect of natural transformation on the evolution of resistance to bacteriophages in the Acinetobacter baylyi model system. Scientific Reports, 2016, 6, 37144.	1.6	4
21	Adaptation in Natural Microbial Populations. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 503-522.	3.8	47
22	Rates of Lateral Gene Transfer in Prokaryotes: High but Why?. Trends in Microbiology, 2015, 23, 598-605.	3.5	153
23	Improved Detection of Staphylococcus intermedius Group in a Routine Diagnostic Laboratory. Journal of Clinical Microbiology, 2015, 53, 961-963.	1.8	32
24	Improvement in <i>Staphylococcus</i> and <i>Bacillus</i> strain differentiation by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling by using microwave-assisted enzymatic digestion. Rapid Communications in Mass Spectrometry, 2014, 28, 1855-1861.	0.7	9
25	Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews, 2013, 37, 936-954.	3.9	418
26	ODoSE: A Webserver for Genome-Wide Calculation of Adaptive Divergence in Prokaryotes. PLoS ONE, 2013, 8, e62447.	1.1	9
27	Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria. PLoS ONE, 2013, 8, e83661.	1.1	67
28	A Comparison of rpoB and 16S rRNA as Markers in Pyrosequencing Studies of Bacterial Diversity. PLoS ONE, 2012, 7, e30600.	1.1	109
29	A species concept for bacteria based on adaptive divergence. Trends in Microbiology, 2011, 19, 1-7.	3.5	79
30	No Apparent Costs for Facultative Antibiotic Production by the Soil Bacterium Pseudomonas fluorescens Pf0-1. PLoS ONE, 2011, 6, e27266.	1.1	33
31	Local Adaptation of Bacteriophages to Their Bacterial Hosts in Soil. Science, 2009, 325, 833-833.	6.0	152
32	Social Conflict in Centimeter-and Global-Scale Populations of the Bacterium Myxococcus xanthus. Current Biology, 2009, 19, 1763-1767.	1.8	127
33	A comparison of homologous recombination rates in bacteria and archaea. ISME Journal, 2009, 3, 199-208.	4.4	489
34	Why do bacteria engage in homologous recombination?. Trends in Microbiology, 2009, 17, 226-232.	3.5	128
35	Natural variation of gliding motility in a centimetre-scale population of Myxococcus xanthus. FEMS Microbiology Ecology, 2008, 64, 343-350.	1.3	27
36	Isolation by Distance in the Spore-Forming Soil Bacterium Myxococcus xanthus. Current Biology, 2008, 18, 386-391.	1.8	83

#	Article	IF	CITATIONS
37	Discovering the Hidden Secondary Metabolome of <i>Myxococcus xanthus</i> : a Study of Intraspecific Diversity. Applied and Environmental Microbiology, 2008, 74, 3058-3068.	1.4	133
38	Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiology Ecology, 2007, 62, 135-141.	1.3	146
39	Genetic Population Structure of the Soil Bacterium Myxococcusxanthus at the Centimeter Scale. Applied and Environmental Microbiology, 2006, 72, 3615-3625.	1.4	83
40	Cooperation and virulence in acute Pseudomonas aeruginosainfections. BMC Biology, 2006, 4, 21.	1.7	188